References
[1]. Arumugam, D., & Purushothaman, S. (2011). Emotion classification using facial expression. International Journal of Advanced Computer Science and Applications, 2(7), 92-98.
[2]. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. Yale University New Haven United States, 19(7), 711-720.snacks
[3]. Beristain, A., & Graña, M. (2009). Emotion recognition based on the analysis of facial expresions: A survey. New Mathematics and Natural Computation, 5(2), 513-534.
[4]. Bishop, C. M. C. C. M. (2006). Pattern recognition and machine learning. Springer, 4(4).
[5]. Calvo, R. A., & D'Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18-37.
[6]. Cohen, I., Sebe, N., Garg, A., Chen, L. S., & Huang, T. S. (2003). Facial expression recognition from video sequences: Temporal and static modeling. Computer Vision and Image Understanding, 91(1-2), 160-187.
[7]. Dailey, M. N., Joyce, C., Lyons, M. J., Kamachi, M., Ishi, H., Gyoba, J., & Cottrell, G. W. (2010). Evidence and a computational explanation of cultural differences in facial expression recognition. Emotion, 10(6), 874.
[8]. Duda, R. O., Hart, P. E., & Stork, D. G. (1998). Pattern Classification, 1(2).
[9]. Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics (Oxford, England), 14(9), 755-763.
[10]. Happy, S. L., & Routray, A. (2015). Automatic facial expression recognition using features of salient facial patches. IEEE Transactions on Affective Computing, 6(1), 1-12.
[11]. Hsu, C. W., & Chang, C. H. (2008). A Practical Guide to Support Vector Classification, BJU Int., 101(1), 1396 - 1400.
[12]. Huang, M. W., Wang, Z. W., & Ying, Z. L. (2010, October). A new method for facial expression recognition based on sparse representation plus LBP. In Image and rd Signal Processing (CISP), 2010 3 International Congress on (Vol. 4, pp. 1750-1754). IEEE.
[13]. Lyons, M. J., Budynek, J., & Akamatsu, S. (1999). Automatic classification of single facial images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12), 1357-1362.
[14]. Lyons, M., Akamatsu, S., Kamachi, M., & Gyoba, J. (1998, April). Coding facial expressions with gabor wavelets. In Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE International Conference on (pp. 200-205). IEEE.
[15]. Nefian, A. V., & Hayes, M. H. (1998, May). Hidden Markov models for face recognition. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on (Vol. 5, pp. 2721-2724). IEEE.
[16]. Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE ASSP Magazine, 3(1), 4-16.
[17]. Russell, J. A. (1994). Is there universal recognition of emotion from facial expression? A review of the crosscultural studies. Psychological Bulletin, 115(1), 102.
[18]. Shawe-Taylor, J., & Tutorial, M. L. (2014). Kernel Methods for Pattern Analysis.
[19]. Shlens, J. (2014). A tutorial on principal component analysis. arXiv preprint arXiv:1404.1100.
[20]. Song, F., Guo, Z., & Mei, D. (2010, November). Feature selection using principal component analysis. In System Science, Engineering Design and Manufacturing Informatization (ICSEM), 2010 International Conference on (Vol. 1, pp. 27-30). IEEE.
[21]. Stamp, M. (2015). A Revealing Introduction to Hidden Markov Models.
[22]. Su, H., & Wang, X. (2014, November). Principal Component Analysis in Linear Discriminant Analysis Space for Face Recognition. In 2014 5th International Conference on Digital Home (ICDH) (pp. 30-34). IEEE.
[23]. Theodoridis, V. & Koutroumbas, K. (2008). Pattern Recogniton (4th Ed), Academic Press.
[24]. Turk, M. A., & Pentland, A. P. (1991, June). Face recognition using eigenfaces. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR'91., IEEE Computer Society Conference on (pp. 586-591). IEEE.
[25]. Wang, J., Chen, Y., & Adjouadi, M. (2008, October). A comparative study of multilinear principal component analysis for face recognition. In Applied Imagery Pattern Recognition Workshop, 2008. AIPR'08. 37th IEEE (pp. 1-6). IEEE.
[26]. Widanagamaachchi, W. N. (2009). Facial emotion recognition with a neural network approach. University of Colombo.
[27]. Ye, Q., Ye, N., & Yin, T. (2015). Fast orthogonal linear discriminant analysis with application to image classification. Neurocomputing, 158, 216-224.
[28]. Yu, H., & Yang, J. (2001). A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recognition, 34(10), 2067-2070.
[29]. Zhi, R., Flierl, M., Ruan, Q., & Kleijn, W. B. (2011). Graph - Preserving Sparse Non negative Matrix Factorization with Application to Facial Expression Recognition. In IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 14(1), pp. 38-52. doi: 10.1109/TSMCB.2010.2044788
[30]. Žitković, G. (2010). Introduction to Stochastic Processes.