References
[1]. Abhyankar, A., & Schuckers, S. (2009). Integrating a wavelet based perspiration liveness check with fingerprint recognition. Pattern Recognition, 42(3), 452-464.
[2]. Antonelli, A., Cappelli, R., Maio, D., & Maltoni, D. (2006a). Fake finger detection by skin distortion analysis. IEEE Transactions on Information Forensics and Security, 1(3), 360-373.
[3]. Antonelli, A., Cappelli, R., Maio, D., & Maltoni, D. (2006b, January). A new approach to fake finger detection based on skin distortion. In International Conference on Biometrics (pp. 221-228). Springer, Berlin, Heidelberg.
[4]. Ardjani, F., Sadouni, K., & Benyettou, M. (2010, November). Optimization of SVM multiclass by particle swarm (PSO-SVM). In Database Technology and Applications (DBTA), 2010 2nd International Workshop on (pp. 1-4). IEEE.
[5]. Baldisserra, D., Franco, A., Maio, D., & Maltoni, D. (2006, January). Fake fingerprint detection by odor analysis. In International Conference on Biometrics (pp. 265-272). Springer, Berlin, Heidelberg.
[6]. Chang, C-C., & Lin, C-J. (2012). A Library for Support Vector Machines [EB/Ol]. Retrieved from https://www. csie.ntu.edu.tw/~cjlin/libsvm/
[7]. Chatfield, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531.
[8]. Choi, H., Kang, R., Choi, K., Jin, A. T. B., & Kim, J. H. (2009). Fake-fingerprint detection using multiple static features. Optical Engineering, 48(4), 047202.
[9]. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 248-255). IEEE.
[10]. Dorian, C., Lefort, R., Bonnel, J., Zarader, J. L., & Adam, O. (2017). Bi-class classification of humpback whale sound units against complex background noise with Deep Convolution Neural Network. arXiv preprint arXiv:1703.10887.
[11]. Espinoza, M., & Champod, C. (2011, November). Using the number of pores on fingerprint images to detect spoofing attacks. In Hand-Based Biometrics (ICHB), 2011 International Conference on (pp. 1-5). IEEE.
[12]. Galbally, J., Alonso-Fernandez, F., Fierrez, J., & Ortega-Garcia, J. (2012). A high performance fingerprint liveness detection method based on quality related features. Future Generation Computer Systems, 28(1), 311-321.
[13]. Ghiani, L., Hadid, A., Marcialis, G. L., & Roli, F. (2013, September). Fingerprint liveness detection using binarized statistical image features. In Biometrics: Theory, Applications and Systems (BTAS), 2013 IEEE Sixth International Conference on (pp. 1-6). IEEE.
[14]. Ghiani, L., Marcialis, G. L., & Roli, F. (2012, November). Fingerprint liveness detection by local phase quantization. In Pattern Recognition (ICPR), 2012 21st International Conference on (pp. 537-540). IEEE.
[15]. Ibrahim, Y., Mu'azu, M. B., Adedokun, A. E., & Sha'aban, Y. A. (2017). A performance analysis of logistic regression and Support Vector Machine classifiers for Spoof Fingerprint Detection. IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON) (pp. 1-5).
[16]. Jia, J., Cai, L., Zhang, K., & Chen, D. (2007, August). A new approach to fake finger detection based on skin elasticity analysis. In International Conference on Biometrics (pp. 309-318). Springer, Berlin, Heidelberg.
[17]. Jiang, Y., & Liu, X. (2015). Spoof fingerprint detection based on co-occurrence matrix. International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(8), 373-384.
[18]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).
[19]. Lapsley, P. D., Lee, J. A., Pare Jr, D. F., & Hoffman, N. (1998). U.S. Patent No. 5,737,439. Washington, DC: U.S. Patent and Trademark Office.
[20]. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.
[21]. Lee, H. S., Maeng, H. J., & Bae, Y. S. (2009, September). Fake finger detection using the fractional Fourier transform. In European Workshop on Biometrics and Identity Management (pp. 318-324). Springer, Berlin, Heidelberg.
[22]. Li, X. Z., & Kong, J. M. (2014). Application of GA–SVM method with parameter optimization for landslide development prediction. Natural Hazards and Earth System Sciences, 14(3), 525-533.
[23]. Manivanan, N., Memon, S., & Balachandran, W. (2010). Automatic detection of active sweat pores of fingerprint using highpass and correlation filtering. Electronics Letters, 46(18), 1268-1269.
[24]. Marasco, E., & Sansone, C. (2012). Combining perspiration-and morphology-based static features for fingerprint liveness detection. Pattern Recognition Letters, 33(9), 1148-1156.
[25]. Memon, S. A. (2012). Novel active sweat pores based liveness detection techniques for fingerprint biometrics (Doctoral Dissertation, Brunel University School of Engineering and Design).
[26]. Nikam, S. B., & Agarwal, S. (2009). Ridgelet-based fake fingerprint detection. Neurocomputing, 72(10-12), 2491-2506.
[27]. Sasikala, V., & Prabha, V. L. (2016). A Fuzzy based classification approach for efficient fake and real fingerprint classification with intelligent feature selection. WSEAS Transactions on Computers, 15, 143-157.
[28]. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.
[29]. Sherin, B. M., & Supriya, M. H. (2015, November). GA based selection and parameter optimization for an SVM based underwater target classifier. In Ocean Electronics (SYMPOL), 2015 International Symposium on (pp. 1-7). IEEE.
[30]. Sukawattanavijit, C., Chen, J., & Zhang, H. (2017). GA-SVM algorithm for improving land-cover classification using SAR and optical remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(3), 284-288.
[31]. Syarif, I., Prugel-Bennett, A., & Wills, G. (2016). SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(4), 1502-1509.
[32]. Wang, C., Li, K., Wu, Z., & Zhao, Q. (2015, November). A DCNN based fingerprint liveness detection algorithm with voting strategy. In Chinese Conference on Biometric Recognition (pp. 241-249). Springer, Cham.
[33]. Xiao, T., Ren, D., Lei, S., Zhang, J., & Liu, X. (2014, June). Based on grid-search and PSO parameter optimization for Support Vector Machine. In Intelligent Control and Automation (WCICA), 2014 11th World Congress on (pp. 1529-1533). IEEE.
[34]. Yambay, D., Ghiani, L., Denti, P., Marcialis, G. L., Roli, F., & Schuckers, S. (2012, March). LivDet 2011-Fingerprint liveness detection competition 2011. In Biometrics (ICB), 2012 5th IAPR International Conference on (pp. 208-215). IEEE.
[35]. Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European Conference on Computer Vision (pp. 818- 833). Springer, Cham.