A Meta-Analysis on Obstacle Detection for Visually Impaired People

N. Veeranjaneyulu*, K. K. Baseer**, V. S. Asha***, T. Madhu Prakash****
*_****Department of Information Technology, Sree Vidyanikethan Engineering College, Tirupati, India.
Periodicity:March - May'2019
DOI : https://doi.org/10.26634/jpr.6.1.15523

Abstract

In general humans have five senses, among all vision is the most important and best gift given to the humans by GOD, but it is limited to some of the people due to their Visual Impairment issues. If vision is the problem then GOD will give the capabilities in other senses. The proportion of visually impaired and blind people in the overall world has become a very large. In a survey report given by WHO (World Health Organization) in 2010, they estimated nearly 285.389 million people are suffering with visual impairment problems across the globe. Many equipment's (Ex: Cane, Assistive shoe, Spectacles) are developed by different authors for detection of obstacles by visual impaired people over the time. All these equipment's are developed by using different techniques like IoT enabled smart cane, GPS/GSM based smart cane, Wearable devices like Assistive shoe's and blind vision spectacles which detects the obstacles, Smart Phone based navigation technology , Image processing techniques based smart cane which uses the camera for capturing the images, ETA's (Electronic Travel Aid's), normal Ultrasonic sensor based smart canes, Sensors(Ultrasonic, LDR's, Soil moisture and water detection) used smart cane and the most advanced smart canes which uses the Algorithms of Machine Learning and Deep Learning ANN, CNN, RNN. In this paper, we present a clear survey of the navigation systems of blind/Visual impaired people that are proposed by different authors highlighting various technologies used, designs implemented, working challenges faced and requirements of blind people for their autonomous navigation either in indoor or outdoor environment. Also we aims at presenting several existing literatures which are based on object detection by blind people. Due to the advancement in techniques and technology, study, analysis and evaluation of all these proposals by different authors will play a vital role. Hence this survey will concentrate on analyzing the process involved in detection of obstacles with different techniques.

Keywords

Visual Impairment, IoT, Ultrasonic Sensor, Wearable Devices, Image Processing, Smart Phone, LDR (Light Dependent Resistor), Machine Learning, Deep Learning.

How to Cite this Article?

Veeranjaneyulu, N., Baseer, K., K., Asha, V., S., Madhu Prakash, T. (2019). A Meta-Analysis on Obstacle Detection for Visually Impaired People.i-manager’s Journal on Pattern Recognition, 6(1), 40-62. https://doi.org/10.26634/jpr.6.1.15523

References

[1]. Adhe, S., Kunthewad, S., Shinde, P., & Kulkarni, V. S. (2015). Ultrasonic smart stick for visually impaired people. IOSR Journal of Electronics and Communication Engineering, 11-15.
[2]. Aghav, J., Hirwe, P., & Nene, M. (2017). Deep Learning for Real Time Collision Detection and Avoidance. In Proceedings of International Conference on Communication, Computing and Networking.
[3]. Ajitkumar, R., Sivasuryan, M., Kumar, M., & Ragavanantham, S. (2018). Design and development of a kit for visually challenged people. International Journal of Innovative Research in Science, Engineering and Technology, 7(4), 3510-3520.
[4]. Al-Fahoum, A. S., Al-Hmoud, H. B., & Al-Fraihat, A. A. (2013). A smart infrared microcontroller-based blind guidance system. Active and Passive Electronic Components, 3(2), 1-7.
[5]. Alshbatat, N., & Ilah, A. (2013). Automated mobility and orientation system for blind or partially sighted people. International Journal on Smart Sensing & Intelligent Systems, 6(2), 569-582.
[6]. Al-Shehabi, M. M., Mir, M., Ali, A. M., & Ali, A. M. (2014). An Obstacle Detection and Guidance System for Mobility of Visually Impaired in Unfamiliar Indoor Environments. International Journal of Computer and Electrical Engineering, 6(4), 337.
[7]. Aruna, A., Mol, Y. B., Delcy, G., & Muthukumaran, N. (2018). Arduino Powered Obstacles Avoidance for Visually Impaired Person. Asian Journal of Applied Science and Technology, 2(2), 101-106.
[8]. Aswathy, V. R., Nadarajan, D., & Rao, S. (2015). Rf based talking signage for blind navigation. International Journal on Cybernetics & Informatics (IJCI), 4(2), 177-187.
[9]. Austen, I. (2004). Street Smarts: A Device to Help the Blind Find Crosswalks. The New York Times.
[10]. Balaji, C. & Marimuthu, M. I. (2017). An electronic stick guidance for visually impaired people navigation using audio system. International Journal of Engineering Science, 7(4), 6303-6306.
[11]. Balakrishnan, G. N. R. Y. S., Sainarayanan, G., Nagarajan, R., & Yaacob, S. (2006). A stereo image processing system for visually impaired. International Journal of Signal Processing, 2(3), 136-145.
[12]. Bhambare, R. R., Koul, A., Bilal, S. M., & Pandey, S. (2014). Smart Vision System For Blind. International Journal of Engineering and Computer Science, 3(5), 5790-5795.
[13]. Bhokare, A., Amberkar, A., Gawde, A., Kale, P., & Pasi, A. (2016). Ultrasonic blind walking stick. International Journal on Recent and Innovation Trends in Computing and Communication, 4(1), 62-65.
[14]. Bouhamed, S. A., Kallel, I. K., & Masmoudi, D. S. (2013). New electronic white cane for stair case detection and recognition using ultrasonic sensor. International Journal of Advanced Computer Science and Applications, 4(6).
[15]. Brassai, S. T., Bako, L., & Losonczi, L. (2011). Assistive Technologies for Visually Impaired People. Acta Universitatis Sapientiae-Electrical & Mechanical Engineering, 3, 39-50.
[16]. Caldini, A., Fanfani, M., & Colombo, C. (2015, September). Smartphone-based obstacle detection for the visually impaired. In International Conference on Image Analysis and Processing (pp. 480-488). Cham: Springer.
[17]. Caraiman, S., Morar, A., Owczarek, M., Burlacu, A., Rzeszotarski, D., Botezatu, N., & Moldoveanu, A. (2017). Computer vision for the visually impaired: the sound of vision system. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1480-1489).
[18]. Castaño, F., Beruvides, G., Haber, R., & Artuñedo, A. (2017). Obstacle recognition based on machine learning for on-chip LiDAR sensors in a cyber-physical system. Sensors, 17(9), 2109.https://doi.org/10.3390/s17092109
[19]. Cavaco, S., Henriques, J. T., Mengucci, M., Correia, N., & Medeiros, F. (2013). Color sonification for the visually impaired. Procedia Technology, 9, 1048-1057. https://doi.org/10.1016/j.protcy.2013.12.117
[20]. Chaitrali, S. K., Yogita, A. D., Snehal, K., Swati, D., & Aarti, V. D. (2015). An intelligent walking stick for the blind. International Journal of Engineering Research and General Science, 3, 1057-1062.
[21]. Chary, B. V. R., & Kumar, B. S. (2014). Rescue System for Visually Impaired Blind Persons. International Journal of Engineering Trends and Technology (IJETT), 16(4).
[22]. Cividanes, E. (2010). Smart Low Power Obstacle Avoidance Device. A Thesis Submitted to The College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida. 1-69.
[23]. Dambhare, S., & Sakhare, A. (2011, December). Smart stick for Blind: Obstacle Detection, Artificial vision and Real-time assistance via GPS. In Proceedings of the 2nd National Conference on Information and Communication Technology, Chennai, India (pp. 23-24).
[24]. Daniyal, D., Ahmed, F., Ahmed, H., & Shaikh, E. Z. A. (2014). Smart Obstacle Detector for Blind Person. Journal of Biomedical Engineering and Medical Imaging, 1(3),31-40.DOI: 10.14738/jbemi.13.245
[25]. Deekshith, B. N., Shwetha, M. N., Padmakar, A., Gouthami, H. N., Sultana, N., (2015). GPS Based Virtual Eye For Visionless. International Journal of Scientific Engineering and Applied Science, 1(4), 101-106.
[26]. Deepik, S., Divya, B. E, Harshitha, K., Komala, B. K., & Shruthi, P., C., (2016). Ultrasonic Blind Walking Stick. International Journal of Advance Electrical and Electronics Engineering (IJAEEE), 5(6).
[27]. DGHS. (2010). Directorate General of Health Services, Ministry of Health and Family Welfare Nirman Bhavan; 2010. Government of India. Managing the revised national tuberculosis control programme in your area. A training course-modules (1-4)-central TB division, 1.
[28]. Dheekonda, R. S., Panda, S., Hasan, M., & Anwar, S. (2017). Object detection from a vehicle using deep learning network and future integration with multi-sensor fusion algorithm (No. 2017-01-0117). SAE Technical Paper. https://doi.org/10.4271/2017-01-0117
[29]. Duarte, K. S. (2014). SmartGuide: Shopping Assistant for Blind People (Post graduate thesis). Retrieved from https://estudogeral.sib.uc.pt/handle/10316/26369
[30]. Eluvathingal, T. J., Misab, P. V., Vishnu, T. S., & Anusree, K. (2018). Advanced Walking Stick for Visually Impaired. International Journal of Advance Research, Ideas and Innovations in Technology, 4(2), 415-420.
[31]. Emerson, R. W., Naghshineh, K., Hapeman, J., & Wiener, W. (2011). A pilot study of pedestrians with visual impairments detecting traffic gaps and surges containing hybrid vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 14(2), 117-127.
[32]. Foster, A., Gilbert, C., & Johnson, G. (2008). Changing patterns in global blindness: 1988–2008. Community Eye Health, 21(67), 37.
[33]. Gaikwad, A. G., & Waghmare, H. K. Ultrasonic Smart Cane Indicating a Safe Free Path to Blind People. International Journal of Advanced Computing and Electronics Technology, 2(4), 12-16.
[34]. Gayathri, G., Vishnupriya, M., Nandhini, R., & Banupriya, M. (2014). Smart walking stick for visually impaired. International Journal of Engineering and Computer Science (IJECS), 3(3), 4057-4061.
[35]. Gbenga, D., E., & Shani, A., I., (2017). Adebimpe Lateef Adekunle “Smart Walking Stick for Visually Impaired People Using Ultrasonic Sensors and Arduino” International Journal of Engineering and Technology (IJET), 9(5).
[36]. Gilson, S., Gohil, S., Khan, F., & Nagaonkar, V. (2015). A wireless navigation system for the visually impaired. Capstone Project. Retrieved from https://pdfs.semantic scholar.org/86b6/835d7da6d8234b7c5322106571613f 1295b4.pdf
[37]. Gori, M, Cappagli, G., & Tonelli, A. (2015). Devices for visually impaired people: High technological devices with low user acceptance and no adaptability for children. Neuroscience & Biobehavioral Reviews, 69, 79- 88.
[38]. Gundewar, P. P., & Abhyankar, H. K. (2013). A Review on an Obstacle Detection in Navigation of Visually Impaired. International Organization of Scientific Research Journal of Engineering (IOSRJEN), 3(1), 1-6.
[39]. Hadáček, B. J. (2017). Application of a Camera in a Mobile Phone for Visually Impaired People (Doctoral Dissertation). Czech Technical University.
[40]. Hakobyan, L., Lumsden, J., O'Sullivan, D., & Bartlett, H. (2013). Mobile assistive technologies for the visually impaired. Survey of Ophthalmology, 58(6), 513-528. https://doi.org/10.1016/j.survophthal.2012.10.004
[41]. Hasan, A., & Sharif, N. (2014). Pedestrian crossing guide based on Android-Cloud platform for blind people (Doctoral dissertation, BRAC University).
[42]. Hassan, S. E. (2012). Are normally sighted, visually impaired, and blind pedestrians accurate and reliable at making street crossing decisions? Investigative Ophthalmology & Visual Science, 53(6), 2593-2600. https://doi.org/10.1167/iovs.11-9340
[43]. Hemalatha, N.,Dhivya, S.,Sobana, M., Viveka, R., & Vishalini, M. (2014). Adaptable Handy Clench for Destitute of Vision using GSM. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(4).
[44]. Hoang, V. N., Nguyen, T. H., Le, T. L., Tran, T. H., Vuong, T. P., & Vuillerme, N. (2017). Obstacle detection and warning system for visually impaired people based on electrode matrix and mobile Kinect. Vietnam Journal of Computer Science, 4(2), 71-83. https://doi.org/10.1007/ s40595-016-0075-z.https://doi.org/10.1016/j.sbspro.2017.02.117
[45]. Huang, W., McNamara, H., Molodan, D., Pasarkar, A., & Rizzo, R. (2014). Smart Cane. Retrieved from https://soe.rutgers.edu/sites/default/files/imce/pdfs/gset- 2014/Smart+Cane+Final.pdf
[46]. Ibam, E., O., Mark, A., Olushina, O., & Awodeyi, J., (2017). A mobility support device for the visually impaired people. International Journal of Computer and Information Technology, 6(4), 196-202.
[47]. Jayashree, N., & Kalpana, Y. (2018). Survey on face recognition, object and text detection for visually challenged people. International Journal of Pure and Applied Mathematics, 119(10), 161-168.
[48]. Johnson, J., Rajan, P. N., Thomas, N. M.,Rakendh, C S., Varghese, S. T. (2017). Smart Walking Stick for Blind. International Journal of Engineering Science Invention Research & Development, 3(4), 557-560.
[49]. José, J., Farrajota, M., Rodrigues, J. M., & Du Buf, J. H. (2011). The Smart Vision local navigation aid for blind and visually impaired persons, 5(5), 362-375.
[50]. Jose, J. T. P. N. (2010). Real-time path and obstacle detection for blind persons. Universidade Do Algarve Faculdade De Ciencias E Tecnologia, 1-49.
[51]. Kalpana Singh, Mansi, et al. (2018). Navigation System for Blind People Using GPS & GSM Techniques. IJSRMS, 3(11).
[52]. Kaur, B., & Bhattacharya, J. (2018). A scene perception system for visually impaired based on object detection and classification using multi-modal DCNN. arXiv preprint arXiv:1805.08798.
[53]. Kaur, N., Sharma, A., Gururani, M., Srivastava, A. K. (2017). Electronic travel aid system for blind people. International Journal of Electrical, Electronics and Data Communication, 5(6),45-46.
[54]. Khenkar, S., Alsulaiman, H., Ismail, S., Fairaq, A., Jarraya, S. K., & Ben-Abdallah, H. (2016). ENVISION: Assisted navigation of visually impaired smartphone users. Procedia Computer Science, 100, 128-135.
[55]. Kim, D. S., Emerson, R. W., & Curtis, A. (2009). Dropoff detection with the long cane: Effects of different cane techniques on per formance. Journal of Visual Impairment & Blindness, 103(9), 519-530.
[56]. Koester, D. (2012). A guidance and obstacle evasion software framework for visually impaired people (Diploma Thesis). Retrieved from https://cvhci. anthropomatik.kit.edu/~dkoester/publications/koester20 13diploma.pdf
[57]. Koley, S., & Mishra, R. (2012). Voice operated outdoor navigation system for visually impaired persons. International Journal of Engineering Trends and Technology, 3(2), 153-157.
[58]. Kumari, P., Chatterjee, S., Kannan, S., Singh , S., & Anuradha, B., (2018). Talkative Assistance System for Visually Impaired People. International Journal of Computer Engineering and Applications, 12, 1-6.
[59]. Kurian, A., Iype, A. K., Jayakumar, A., Kuriakose, S., James, A. (2017). A Microcontroller Based Smart Electronic Stick for Visually Impaired. International Journal of Innovative Research in Computer and Communication Engineering, 5(3), 5807-5811. https://doi.org/ 10.15680/IJIRCCE.2017. 0503269
[60]. Kuruvila, F., & Gulappagol, L., (2014). Intelligent Guidance System for Visually Impaired. International Journal of Electrical and Electronics Research, 2(3), 83- 87.
[61]. Lajurkar, H. D., & Malokar, R. D.(2017). Currency Recognition Blind Walking Stick. IJIRST - International Journal for Innovative Research in Science & Technology. 4(7), 40-42.
[62]. Lakde, C. K., & Prasad, P. S. (2015). Review paper on navigation system for visually impaired people. International Journal of Advanced Research in Computer and Communication Engineering, 4(1), 166- 168.
[63]. Lalar, S. (2013). Obstacle Detection Sensors: A Survey. General Article International Journal of Current Engineering and Technology, 3(5), 2138-2142.
[64]. Leduc-Mills, B., Profita, H., Bharadwaj, S., & Cromer, P. (2013). ioCane: A smart-phone and sensor-augmented mobility aid for the blind. Computer Science Technical Reports, 1031. https://scholar.colorado.edu/csci_techreports/1031
[65]. Lelièvre, F., & Bournot, M. (2005). Importance, caractéristiques, incapacités fonctionnelles et difficulties socials.
[66]. Lin, Q., Hahn, H., & Han, Y. (2013). Top-view-based guidance for blind people using directional ellipse model. International Journal of Advanced Robotic Systems, 10(9), 319. https://doi.org/10.5772/56715
[67]. Lokesh. A., Manjunath. T., Karthik., Srisail., & Kiran. M. (2016). Electronic stick along with android smartphone's to the aid of blindly disabled individuals. International Journal of Recent Trends in Engineering & Research, 2(5), 493-500.
[68]. Madulika, S. V., Mohan, M., Sridevi, C., & Rao, T. (2013). Arm7 based electronic travel aid system for blind people navigation and monitoring. International Journal of Research in Computer and Communication Technology, 2(12), 153-155.
[69]. Mahalle, S., & Lokhande, H. (February. 2014). “Ultrasonic Spectacles & Waist- Belt for Visually Impaired & Blind Person. IOSR Journal of Engineering, 4(2), 46-49.
[70]. Majerova, H. (2017). The Person in a Situation of Visual Impairment and its Perception and Imagination from the Qualitative Viewpoint. Procedia-Social and Behavioral Sciences, 237, 751-757.
[71]. Manohar, S. (2015). Dynamic Obstacle Detection (Bachelor of Technology Thesis, National Institute of Technology, Rourkela).
[72]. Martin, E. (2016). Technology Based Aid for the Visually Impaired (Thesis, The University of Dublin, Trinity College Dublin). Retrieved from https://scss.tcd.ie/ publications/theses/diss/2016/TCD-SCSS-DISSERTATION- 2016-007.pdf
[73]. Mascetti, S., Ahmetovic, D., Gerino, A., & Bernareggi, C. (2016). ZebraRecognizer: Pedestrian crossing recognition for people with visual impairment or blindness. Pattern Recognition, 60, 405-419. https://doi.org/10.1016/j.patcog.2016.05.002
[74]. Mascetti, S., Ahmetovic, D., Gerino, A., Bernareggi, C., Busso, M., & Rizzi, A. (2016). Robust traffic lights detection on mobile devices for pedestrians with visual impairment. Computer Vision and Image Understanding, 148, 123-135. https://doi.org/10.1016/j.cviu.2015.11.017
[75]. Mascetti, S., Picinali, L., Gerino, A., Ahmetovic, D., & Bernareggi, C. (2016). Sonification of guidance data during road crossing for people with visual impairments or blindness. International Journal of Human-Computer Studies, 85, 16-26. https://doi.org/10.1016/j.ijhcs.2015.08.003
[76]. Megalingam, R. K., Nambissan, A., Thambi, A., Gopinath, A., & Nandakumar, M. (2014, June). Sound and touch based smart cane: Better walking experience for visually challenged. In 2014 IEEE Canada International Humanitarian Technology Conference-(IHTC) (pp. 1-4). IEEE.
[77]. Mohajeri, N., Roozbeh, R., & Daneshvar, S. (2011). An obstacle detection system for blind people. In Proceedings of the World Congress on Engineering (Vol II).
[78]. Mohamed, A. M. A., & Hussein, M. A. (2016). Survey on obstacle detection and tracking system for the visual impaired. International Journal of Recent Trends in Engineering & Research, 2(8), 230-234.
[79]. National Health Profile. (2007). Central Bureau of Health Intelligence. Directorate General of Health Services, Ministry of Health and Family, Nirman Bhavan, New Delhi– 110011
[80]. Nirmalan, P. K., Thulasiraj, R. D., Maneksha, V., Rahmathullah, R., Ramakrishnan, R., Padmavathi, A. (2002). A population based eye survey of older adults in Tirunelveli district of south India: Blindness, cataract surger y and visual outcomes. British Journal of Ophthalmology, 86, 505-512.
[81]. Nowshin, N., Shadman, S., Joy, S., Aninda, S., & Minhajul, I. M. (2017). An Intelligent Walking Stick for the Visually-Impaired People. International Journal of Online Engineering (iJOE), 13(11), 94-101.
[82]. Oladayo, O. O. (2014). A multidimensional walking aid for visually impaired using ultrasonic sensors network with voice guidance. International Journal of Intelligent Systems and Applications, 6(8), 53. DOI: 10.5815/ijisa. 2014.08.06.
[83]. Omoifo, D. (2018). Obstacle detection in autonomous vehicles using deep learning (Thesis, Metropolia University of Applied Sciences).
[84]. Paisios, N. (2012). Mobile accessibility tools for the visually impaired (Doctoral Dissertation), New York University.
[85]. Palanisamy, K., Arunkumar, K., Bhuvaneshwaran, P., Naveenkumar, S., Dhamodharan, M. (2017). Walking Stick with OPCFD System. Global Research and Development Journal for Engineering, 3(1),1-5.
[86]. Pashiney, V., & Bhosle, N. (2017). Smart cane stick for visually impaired persons along with geographical location tracing system. International Journal of Science Technology & Engineering, 4(1), 173-177.
[87]. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. British Journal of Ophthalmology, 96(5), 614-618. https://doi.org/10.1136/ bjophthalmol-2011-30053
[88]. Patankar, A., & Nikoubin, T. (2016, July). Wearable system for obstacle detection and human assistance th using ultrasonic sensor array. In Proceedings of the 7 International Conference on Computing Communication and Networking Technologies (p. 14). ACM.
[89]. Paulchamy, B., Anandhasundaram, K., (2018). A Novel Approach of Obstacle Detection for Visually Impaired People using Sensor Devices based Ultrasonic System. International Journal for Scientific Research & Development, 6(2).
[90]. Poggi, M., & Mattoccia, S. (2016, June). A wearable mobility aid for the visually impaired based on embedded 3D vision and deep learning. In 2016 IEEE Symposium on Computers and Communication (ISCC) (pp. 208-213). IEEE.
[91]. Pokale, S., Soni, S., & Shimpi, N. (2015). multipurpose gadget for blind person using GPS, obstacle detection, GSM modem and ARM7. National Conference- Ekalavya- 2k15, Special issue published by Multidisciplinary Journal of Research in Engineering and Technology (pp. 78- 84).
[92]. Połap, D., Kęsik, K., Książek, K., & Woźniak, M. (2017). Obstacle detection as a safety alert in augmented reality models by the use of deep learning techniques. Sensors, 17(12), 2803. https://doi.org/10.3390/s17122803
[93]. Priyadarshana, Y., & Wimalaratne, G. D. S. P. (2014). Sensing environment through mobile: A personalized wearable obstacle detection system for visually impaired people. International Journal of Engineering and Innovative Technology (IJEIT), 3(6), 1-8.
[94]. Radhika, R., Pai, P. G., Rakshitha, S., & Srinath, R. (2016). Implementation of smart stick for obstacle detection and navigation. International Journal of Latest Research in Engineering and Technology, 2(5), 45-50.
[95]. Rahman, S., Ullah, S., & Ullah, S. (2018, January). Obstacle detection in indoor environment for visually impaired using mobile camera. Journal of Physics: Conference Series, 960(1), 1-7.
[96]. Rajwani, R., Purswani, D., Kalinani, P. (2018). Proposed system on object detection for visually impaired people. International Journal of Information Technology (IJIT), 4(1), 1-6.
[97]. Rakshith, M. N., Ramesh, D., Sundar, S., & Shanmugasundaram, M. (2017). An efficient assistive system for the visually impaired. ARPN Journal of Engineering and Applied Sciences, 12(9), 5574-5577.
[98]. Rama, M. N., & Sudha, P. N. (2016). Smart navigation system for visually challenged people. International Journal of Industrial Electronics and Electrical Engineering (IJIEEE), 45-48.
[99]. Ramamohan, C., & Vardhan, V. D. (2016). Obstacle Detection And Navigation System for Impaired People. International Journal of Science, Engineering and Technology Research (IJSETR), 5(8), 2684-2689.
[100]. Ramirez, A. R. G., da Silva, R. F. L., Cinelli, M. J., & de Albornoz, A. D. C. (2012). Evaluation of electronic haptic device for blind and visually impaired people: A case study. Journal of Medical and Biological Engineering, 32(6), 423-428. https://doi.org/10.5405/jmbe.925
[101]. Ramirez, A. R. G., da Silva, R. F. L., Cinelli, M. J., & de Albornoz, A. D. C. (2012). Evaluation of electronic haptic device for blind and visually impaired people: A case study. Journal of Medical and Biological Engineering, 32(6), 423-428.
[102]. Rashad, B. N., & Nishadha, S. G. (2014). Artificial Vision for the Blind Using Motion Vector Estimation Technique. International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 315-322.
[103]. Rastogi, S., Sharma, P., Dhall, P., Agarwal, R., & Sharma, P., (2017). A review paper on assistive shoe & cane for visually impaired people. International Journal of Scientific Research and Management Studies (IJSRMS), 3(2), 113-117 .
[104]. Rebekk, & Hoffmanna et. al. Dark glass, smart shoe, echolocation, autonomous way. International Journal of Human-Computer Studies, 115, 9-19.
[105]. Rodríguez, A., Bergasa, L. M., Alcantarilla, P. F., Yebes, J., & Cela, A. (2012, June). Obstacle avoidance system for assisting visually impaired people. In Proceedings of the IEEE Intelligent Vehicles Symposium Workshops (Vol. 35, p. 16).
[106]. Rodríguez, A., Yebes, J. J., Alcantarilla, P., Bergasa, L., Almazán, J., & Cela, A. (2012). Assisting the visually impaired: Obstacle detection and warning system by acoustic feedback. Sensors, 12(12), 17476-17496.
[107]. Roy, U., Rahman, M., & Hasan, F. B. (2017). Automated drug detection and location identification for visually impaired using image processing and voice commands (Doctoral dissertation), BRAC University.
[108]. Sachin, N., Muneshwara, M. S., Anil, G. N. (2016). Obstacle detection and deviation technique in real world. International Journal of Current Trends in Engineering & Research, 2(5), 117 –122.
[109]. Saffoury, R., Blank, P., Sessner, J., Groh, B. H., Martindale, C. F., Dorschky, E., ... & Eskofier, B. M. (2016, December). Blind path obstacle detector using st smartphone camera and line laser emitter. In 2016 1 International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW) (pp. 1-7). IEEE.
[110]. Sakhardande, J., Pattanayak, P., & Bhowmick, M. (2012). Smart cane assisted mobility for the visually impaired. World Academy of Science, Engineering and Technology. International Journal of Electrical and Computer Engineering, 6(10).
[111]. Sanchez, J., Yumang, A., & Caluyo, F. (2015). RFID based indoor navigation with obstacle detection based on A* Algorithm for the visually impaired. International Journal of Information and Electronics Engineering, 5(6), 428.
[112]. Sangami, A., Kavithra, M., Rubina, K., & Sivaprakasam, S. (2015). Obstacle detection and location finding for blind people. International Journal of Innovative Research in Computer and Communication Engineering, 3, 119-123.
[113]. Sarvesh, A., Ali, M. J., Birajdar, T., Patil, D., Saoji, S. (2015). Object detection in a smartphone for visually impaired users. International Journal of Advanced Research in Computer Science & Technology (IJARCST), 3(1), 127- 128.
[114]. Senem, K. (2010). Wearable obstacle detection system integrated with conductive fibers for blinds (Thesis Proposal Report), Istanbul Technical University.
[115]. Sharma, B., Anwar, A., Nazir, A., Rashid, A., & Islam, K., J., U. (2017). Obstacle sensing and location tracking system for vision impaired persons. International Journal of Engineering Science and Computing, 7(5), 11265- 11267.
[116]. Sharma, P., Shimi, S. L., & Chatterji, S. (2015). A review on obstacle detection and vision. International Journal of Engineering Sciences & Research Technology, 4(1).
[117]. Shashank, K. V. N. & Kavitha. An electronic walking stick for blinds. International Conference on Information Communication & Embedded Systems (ICICES 2014).
[118]. Shin, B., S., & Lim, C., S., (2007, November). Obstacle detection and avoidance system for visually impaired people. In International Workshop on Haptic and Audio Interaction Design (pp. 78-85). Springer, Berlin, Heidelberg.
[119]. Shobhana, E. (2014). Microcontroller based obstacle detection device using voice signal for the visually impaired. International Journal Of Modern Engineering Research (IJMER), 4(5), 70-74.
[120]. Šimunović, L., Anđelić, V., & Pavlinušić, I. (2012). Blind people guidance system. Central Conference on Information and Intelligent Systems, 427-493.
[121]. Singh, M. G., Sharma, A., Tiwari, B. (2016). Smart EStick for visually impaired. International Journal of Advanced Research in Computer Science and Software Engineering, 6(12), 14-17.
[122]. Singhal, S., & Modi, S. (2016). A navigation guide for visually impaired person (Doctoral Dissertation). Thapar University.
[123]. Strömgren, O. (2018). Deep learning for autonomous collision avoidance, (Post graduate Thesis), Linköping University.
[124]. Sudhanthiradevi, M., Devi, S. M., & Roshini, R. (2016). Arduino based walking stick for visually impaired. International Journal of Advanced Research Trends in Engineering and Technology (IJARTET), 3, 188-191.
[125]. Suryavanshi, A., N., Chavan, M., S., & Jadhav, S., B., (April 2016). Assistance for visually impaired people. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 4(IV).
[126]. Swathi, K., Ismitha, E. R., Subhashini, R. (2017). Smart walking stick using IoT. International Journal of Innovations & Advancement in Computer Science, IJIACS, 6(11), 124-128.
[127]. Szegedy, C., Toshev, A., & Erhan, D. (2013). Deep neural networks for object detection. In Advances in Neural Information Processing Systems (pp. 2553-2561).
[128]. Tekade, A., Sonekar, M., Ninave, M., & Dongre, P. (2018). Ultrasonic blind stick with GPS tracking system. International Journal of Engineering Science and Computing, 8(3), 16248 -16250.
[129]. Tekli, J., Issa, Y. B., & Chbeir, R. (2018). Evaluating touch-screen vibration modality for blind users to access simple shapes and graphics. International Journal of Human-Computer Studies, 110 ( c), 115-133. https://doi. org/10.1016/j.ijhcs.2017.10.009
[130]. Nguyen, T. C. (2014). Haptic Obstacle Detector for the blind (Post graduate Thesis), KTH Industrial Engineering and Management, Machine Design, Stockholm. Retrieved from http://www.diva-portal.org/smash/get/ diva2:818827/FULLTEXT01.pdf
[131]. Thulasiraj, R. D., Nirmalan, P. K., Ramakrishnan, R., Krishnadas, R., Manimekalai, T. K., Baburajan, N. P., ... & Robin, A. L. (2003). Blindness and vision impairment in a rural south Indian population : The Aravind Comprehensive Eye Survey. Ophthalmology, 110(8), 1491-1498.
[132]. Thulasiraj, R. D., Rahamathulla, R., Saraswati, A., Selvaraj, S., & Ellwein, L. B. (2002). The Sivaganga eye survey: I. Blindness and cataract surgery. Ophthalmic Epidemiology, 9(5), 299-312.
[133]. Tripathi, M., Kumar, M., Kumar, V., & Kandlikar, W. (2014). Electronics Guidance For The Navigation Of Visually Impaired Person. International Journal for Research in Applied Science and Engineering Technology (IJRASET), 2(6).
[134]. Uppala, S. (2017). Smart Guiding Blind Stick. International Journal of Advance research in science and Engineering, 6(10), 2112- 2115.
[135]. Vasireddy, S., Ravipati, V., Ravi, T., & Jegan, G. (2016). Wireless sensor based GPS mobile application for blind people navigation. ARPN Journal of Engineering and Applied Sciences, 11(13), 8374- 8379.
[136]. Veeranjaneyulu, N., Baseer, K., K., Asha, V., S., Madhu Prakash, T. (2019). A systematic literature review on obstacle detection for visually impaired people. International Journal of Computer Sciences and Engineering, 7(6), pp.56-65.
[137]. Vemparala, R., & Gupta, P. (2017). National th Programme for control of blindness (NPCB) in the 12 five year plan: An overview. The Official Scientific Journal of Delhi Ophthalmological Society, 27(4), 290-292.
[138]. Venkateswar, S., & Mehendale, N. (2012). Intelligent belt for the blind. International Journal of Scientific & Engineering Research, 3(11), 1-3.
[139]. Vignesh, A., & Madheswari, K. (2017). Object detection application for visually challenged people using internet of things. International Journal for Research in Engineering Application & Management, 2(6),72-76.
[140]. Vigneshwari, C., Vimala, V., & Sumithra, G. (2013). Sensor based assistance system for visually impaired. International Journal of Engineering Trends and Technology (IJETT), 4(10).
[141]. Wahab, M. H. A., Talib, A. A., Kadir, H. A., Johari, A., Noraziah, A., Sidek, R. M., & Mutalib, A. A. (2011). Smart cane: Assistive cane for visually-impaired people. arXiv preprint arXiv:1110.5156, 8(4), 21-27.
[142]. Wankhade, S., Bichukale, M., Desai, S., Kamthe, S., & Borate, A. (2017). Smart stick for blind people with live video feed. International Research Journal of Engineering and Technology, 4(3), 1774-1778.
[143]. WHO Expert Committee on the Control of the Leishmaniases. Meeting, & World Health Organization. (2010). Control of the Leishmaniases: Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, 22-26 March 2010 (Vol. 949). http://www.who.int/mediacentre/factsheets/fs282/en/
[144]. Wold, Zimmer, E., & Padoy, S., H., (2016). Indoor Navigation for the Visually Impaired-A Systematic Literature Review. Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology, Norway .
[145]. Zeller, N. (2013). Obstacle detection using Microsoft Kinect (Master's Thesis), Ryerson University. Engineering Research, 3(11), 1-3.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.