References
[1]. Abadi, S. B. K., Khavandi, A., & Kharazi, Y. (2010).
Effects of mixing the steel and carbon fibers on the friction
and wear properties of a PMC friction material. Applied
Composite Materials, 17(2), 151-158. https://doi.org/10.
1007/s10443-009-9115-5
[2]. Almaslow, A., Ghazali, M. J., Talib, R. J., Ratnam, C. T.,
& Azhari, C. H. (2013). Effects of epoxidized natural
rubber–alumina nanoparticles (ENRAN) composites in
semi-metallic brake friction materials. Wear, 302(1-2),
1392-1396. https://doi.org/10.1016/j.wear.2013.01.033
[3]. Amaren, S. G., Yawas, D. S., & Aku, S. Y. (2013). Effect
of periwinkles shell particle size on the wear behavior of
asbestos free brake pad. Results in Physics, 3, 109-114.
https://doi.org/10.1016/j.rinp.2013.06.004
[4]. Anoop, S., Natarajan, S., & Babu, S. K. (2009). Analysis
of factors influencing dry sliding wear behaviour of
Al/SiCp–brake pad tribosystem. Materials & Design, 30(9),
3831-3838. https://doi.org/10.1016/j.matdes.2009.03.
034
[5]. Aranganathan, N., & Bijwe, J. (2016a). Comparative
performance evaluation of NAO friction materials
containing natural graphite and thermo-graphite. Wear,
358, 17-22. https://doi.org/10.1016/j.wear.2016.03.032
[6]. Aranganathan, N., & Bijwe, J. (2016b). Development
of copper-free eco-friendly brake-friction material using
novel ingredients. Wear, 352, 1-33. https://doi.org/10.
1016/j.wear.2016.01.023
[7]. Aranganathan, N., Mahale, V., & Bijwe, J. (2016).
Effects of aramid fiber concentration on the friction and
wear characteristics of non-asbestos organic friction
composites using standardized braking tests. Wear, 354,
69-77. https://doi.org/10.1016/j.wear.2016.03.002
[8]. Asif, M. (2012). Tribo-evaluation of Aluminium based metal matrix composites used for automobile brake pad
applications. Plastic and Polymer Technology, 1(1), 9-14.
[9]. Barros, L. Y., Neis, P. D., Ferreira, N. F., Pavlak, R. P.,
Masotti, D., Matozo, L. T., & Andó, M. (2016).
Morphological analysis of pad-disc system during braking
operations. Wear, 352, 287-298. https://doi.org/10.1016/
j.wear.2016.02.005
[10]. Bian, G., & Wu, H. (2015). Friction performance of
carbon/silicon carbide ceramic composite brakes in
ambient air and water spray environment. Tribology
International, 92, 1-11. https://doi.org/10.1016/j.triboint.
2015.05.023
[11]. Bian, G., & Wu, H. (2016). Friction surface structure of
a Cf/C–SiC composite brake disc after bedding testing on
a full-scale dynamometer. Tribology International, 99, 85-
95. https://doi.org/10.1016/j.triboint.2016.03.010
[12]. Blau, P. J., Jolly, B. C., Qu, J., Peter, W. H., & Blue, C. A.
(2007). Tribological investigation of titanium-based
materials for brakes. Wear, 263(7-12), 1202-1211.
https://doi.org/10.1016/j.wear.2006.12.015
[13]. Boz, M., & Kurt, A. (2007). The effect of Al2O3 on the
friction performance of automotive brake friction
materials. Tribology International, 40(7), 1161-1169.
https://doi.org/10.1016/j.triboint.2006.12.004
[14]. Cai, P., Li, Z., Wang, T., & Wang, Q. (2015). Effect of
aspect ratios of aramid fiber on mechanical and
tribological behaviors of friction materials. Tribology
International, 92, 109-116. https://doi.org/10.1016/j.
triboint.2015.05.024
[15]. Chan, D. S. E. A., & Stachowiak, G. W. (2004). Review
of automotive brake friction materials. Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, 218(9), 953-966. https://doi.org/
10.1243%2F0954407041856773
[16]. Cheng, D. Q., Wang, X. T., Zhu, J., Qiu, D. H., Cheng,
X. W., & Guan, Q. F. (2009). Friction and wear behavior of
carbon fiber reinforced brake materials. Frontiers of
Materials Science in China, 3(1), 56-60. https://doi.org/
10.1007/s11706-009-0012-5
[17]. Cho, K. H., Cho, M. H., Kim, S. J., & Jang, H. (2008).
Tribological properties of potassium titanate in the brake friction material; morphological effects. Tribology Letters,
32(1), 59-66. https://doi.org/10.1007/s11249-008-9362-x
[18]. Coleman, J. N., Khan, U., Blau, W. J., & Gun'ko, Y. K.
(2006). Small but strong: A review of the mechanical
properties of carbon nanotube-polymer composites.
Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.
carbon.2006.02.038
[19]. Dadkar, N., Tomar, B. S., & Satapathy, B. K. (2009).
Evaluation of fly ash-filled and aramid fibre reinforced
hybrid Polymer Matrix Composites (PMC) for friction
braking applications. Materials & Design, 30(10), 4369-
4376. https://doi.org/10.1016/j.matdes.2009.04.007
[20]. Dhand, V., Mittal, G., Rhee, K. Y., Park, S. J., & Hui, D.
(2015). A short review on basalt fiber reinforced polymer
composites. Composites Part B: Engineering, 73, 166-
180. https://doi.org/10.1016/j.compositesb.2014.12.011
[21]. Dhangar, A. D., Jani, R.J. (n.d). Review on wear
measurement of automotive disc brake friction material
International Journal of Innovative Research and Studies
(IJIRS), 2, 404-411.
[22]. El-Tayeb, N. S. M., & Liew, K. W. (2008). Effect of water
spray on friction and wear behaviour of noncommercial
and commercial brake pad materials. Journal of
Materials Processing Technology, 208(1-3), 135-144.
https://doi.org/10.1016/j.jmatprotec.2007.12.111
[23]. Ertan, R., & Yavuz, N. (2010). An experimental study
on the effects of manufacturing parameters on the
tribological properties of brake lining materials. Wear,
268(11-12), 1524-1532. https://doi.org/10.1016/j.wear.
2010.02.026
[24]. Fiore, V., Scalici, T., Di Bella, G., & Valenza, A. (2015).
A review on basalt fibre and its composites. Composites
Part B: Engineering, 74, 74-94. https://doi.org/10.1016/
j.compositesb.2014.12.034
[25]. Garshin, A. P., Kulik, V. I., & Nilov, A. S. (2008). Braking
friction materials based on fiber-reinforced composites
with carbon and ceramic matrices. Refractories &
Industrial Ceramics, 49(5), 391-396. https://doi.org/10.
1007/s11148-009-9099-6
[26]. Gilardi, R., Alzati, L., Thiam, M., Brunel, J. F., Desplanques, Y., Dufrénoy, P., & Bijwe, J. (2012). Copper
substitution and noise reduction in brake pads: Graphite
type selection Materials, 5(11), 2258-2269.
https://doi.org/10.3390/ma5112258
[27]. Gurunath, P. V., & Bijwe, J. (2007). Friction and wear
studies on brake-pad materials based on newly
developed resin. Wear, 263(7-12), 1212-1219.
https://doi.org/10.1016/j.wear.2006.12.050
[28]. Gyimah, G. K., Huang, P., & Chen, D. (2014). Dry
sliding wear studies of copper-based powder metallurgy
brake materials. Journal of Tribology, 136(4), 1-6.
https://doi.org/10.1115/1.4027477
[29]. Hee, K. W., & Filip, P. (2005). Performance of ceramic
enhanced phenolic matrix brake lining materials for
automotive brake linings. Wear, 259(7-12), 1088-1096.
https://doi.org/10.1016/j.wear.2005.02.083
[30]. Hodgson, R. (n.d). Friction Brake Theory. Academia
(pp.179-190). https://www.academia.edu/28211743/
Textbook_on_Friction_Brake_Theory_2_
[31]. Idris, U. D., Aigbodion, V. S., Abubakar, I. J., & Nwoye,
C. I. (2015). Eco-friendly asbestos free brake-pad: Using
banana peels. Journal of King Saud University-
Engineering Sciences, 27(2), 185-192. https://doi.org/10.
1016/j.jksues.2013.06.006
[32]. Ikpambese, K. K., Gundu, D. T., & Tuleun, L. T. (2014).
Evaluation of Palm Kernel Fibers (PKFs) for production of
asbestos-free automotive brake pads. Journal of King
Saud University-Engineering Sciences, 1-9. https://doi.
org/10.1016/j.jksues.2014.02.001
[33]. Ilanko, A. K., & Vijayaraghavan, S. (2016). Wear
behavior of asbestos-free eco-friendly composites for
automobile brake materials. Friction, 4(2), 144-152.
https://doi.org/10.1007/s40544-016-0111-0
[34]. Jang, H., & Kim, S. J. (2000). The effects of antimony
trisulfide (Sb S ) and zirconium silicate (ZrSiO ) in the 2 3 4
automotive brake friction material on friction
characteristics. Wear, 239(2), 229-236. https://doi.org/10.
1016/s0043-1648(00)00314-8
[35]. Kameda, T., Takahashi, K., Kim, R., Jiang, Y.,
Movahed, M., Park, E. K., & Rantanen, J. (2014). Asbestos:
use, bans and disease burden in Europe. World Health Organization, 92, 1-8. https://doi.org/10.2471/BLT.13.13
2118
[36]. Kumar, M., & Bijwe, J. (2010). NAO friction materials
with various metal powders: Tribological evaluation on
full-scale inertia dynamometer. Wear, 269(11-12), 826-
837. https://doi.org/10.1016/j.wear.2010.08.011
[37]. Kumar, M., & Bijwe, J. (2011). Composite friction
materials based on metallic fillers: sensitivity of μ to
operating variables. Tribology International, 44(2), 106-
113. https://doi.org/10.1016/j.triboint.2010.09.013
[38]. Kumar, M., & Bijwe, J. (2016). Non-asbestos organic
(NAO) friction composites: Role of copper; its shape and
amount. Wear, 358-359, 17-22. https://doi.org/10.1016/
j.wear.2010.10.068
[39]. Laden, K., Guerin, J. D., Watremez, M., & Bricout, J. P.
(2000). Frictional characteristics of Al–SiC composite
brake discs. Tribology Letters, 8(4), 237-247. http://doi.org/
10.1023/A:1019159923619
[40]. Lazim, A. M., Kchaou, M., Hamid, M. A., & Bakar, A. A.
(2016). Squealing characteristics of worn brake pads due
to silica sand embedment into their friction layers. Wear,
358, 123-136. https://doi.org/10.1016/j.wear.2016.04.006
[41]. Liu, Y., Fan, Z., Ma, H., Tan, Y., & Qiao, J. (2006).
Application of nano powdered rubber in friction materials.
Wear, 261(2), 225-229. http://doi.org/10.1016/j.wear.
2005.10.011
[42]. Maleque, M. A., Atiqah, A., Talib, R. J., & Zahurin, H.
(2012). New natural fibre reinforced aluminium
composite for automotive brake pad. International
Journal of Mechanical and Materials Engineering, 7(2),
166-170.
[43]. Maleque, M. A., Dyuti, S., & Rahman, M. M. (2010).
Material selection method in design of automotive brake
disc. In Proceedings of the World Congress on
Engineering (Vol. 3), London, U.K.
[44]. Martinez, A. M., & Echeberria, J. (2016). Towards a
better understanding of the reaction between metal
powders and the solid lubricant Sb2S3 in a low-metallic
brake pad at high temperature. Wear, 348, 27-42.
https://doi.org/10.1016/j.wear.2015.11.014
[45]. Matájka, V., Lu, Y., Jiao, L., Huang, L., Martynková, G.
S., & Tomášek, V. (2010). Effects of silicon carbide particle
sizes on friction-wear properties of friction composites
designed for car brake lining applications. Tribology
International, 43(1-2), 144-151. https://doi.org/10.1016/j.
triboint.2009.05.007
[46]. Nagesh, S. N., Siddaraju, C., Prakash, S. V., &
Ramesh, M. R. (2014). Characterization of brake pads by
variation in composition of friction materials. Procedia
Materials Science, 5, 295-302.
[47]. Nirmal, U., Hashim, J., & Ahmad, M. M. (2015). A
review on tribological performance of natural fibre
polymeric composites. Tribology International, 83, 77-
104. https://doi.org/10.1016/j.triboint.2014.11.003
[48]. Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2016).
State of the art on tribological behavior of polymer matrix
composites reinforced with natural fibers in the green
materials world. Engineering Science and Technology, an
International Journal, 19(2), 717-736. https://doi.org/10.
1016/j.jestch.2015.10.007
[49]. Österle, W., Kloß, H., Urban, I., & Dmitriev, A. I. (2007).
Towards a better understanding of brake friction materials.
Wear, 263(7-12), 1189-1201. https://doi.org/10.1016/j.
wear.2006.12.020
[50]. Öztürk, B., & Öztürk, S. (2011). Effects of resin type
and fiber length on the mechanical and tribological
properties of brake friction materials. Tribology Letters,
42(3), 339-350. https://doi.org/10.1007/s11249-011-
9779-5
[51]. Öztürk, B., Arslan, F., & Öztürk, S. (2013). Effects of
different kinds of fibers on mechanical and tribological
properties of brake friction materials. Tribology
Transactions, 56(4), 536-545. https://doi.org/10.1080/
10402004.2013.767399
[52]. Pickering, K. L., Efendy, M. A., & Le, T. M. (2016). A
review of recent developments in natural fibre
composites and their mechanical performance.
Composites Part A: Applied Science and Manufacturing,
83, 98-112. https://doi.org/10.1016/j.compositesa.2015.
08.038
[53]. Rehman, A., Das, S., & Dixit, G. (2012). Analysis of stir die cast Al–SiC composite brake drums based on
coefficient of friction. Tribology International, 51, 36-41.
https://doi.org/10.1016/j.triboint.2012.02.007
[54]. Satapathy, B. K., & Bijwe, J. (2004). Performance of
friction materials based on variation in nature of organic
fibres: Part I. Fade and recovery behaviour. Wear, 257 (5-
6), 573-584. https://doi.org/10.1016/j.wear.2004.03.003
[55]. Satapathy, B. K., & Bijwe, J. (2006). Composite
friction materials based on organic fibres: Sensitivity of
friction and wear to operating variables. Composites Part
A: Applied Science and Manufacturing, 37(10), 1557-
1567. https://doi.org/10.1016/j.compositesa.2005.
11.002
[56]. Sharma, M., Gao, S., Mäder, E., Sharma, H., Wei, L.
Y., & Bijwe, J. (2014). Carbon fiber surfaces and
composite interphases. Composites Science and
Technology, 102, 35-50. https://doi.org/10.1016/j.
compscitech.2014.07.005
[57]. Shu, Y., Jie, C., Qizhong, H., Xiang, X., Tong, C., &
Yunping, L. (2010). Effect of braking speeds on the
tribological properties of carbon/carbon composites.
Materials Transactions, 51(5), 1038-1043. https://doi.org/
10.2320/matertrans.M2009390
[58]. Singh, T., & Patnaik, A. (2014). Performance
assessment of lapinus-aramid based brake pad hybrid
phenolic composites in friction braking. Archives of Civil
and Mechanical Engineering, 1-11. https://doi.org/10.
1016/j.acme.2014.01.009
[59]. Singh, T., Patnaik, A., Satapathy, B. K., Kumar, M., &
Tomar, B. S. (2013). Effect of nanoclay reinforcement on
the friction braking performance of hybrid phenolic
friction composites. Journal of Materials Engineering and
Performance, 22(3), 796-805. https://doi.org/10.1016/j.
triboint.2011.07.008
[60]. Telang, A. K., Rehman, A., Dixit, G., & Das, S. (2010).
Alternate materials in automobile brake disc applications with emphasis on Al composites–a technical review.
Journal of Engineering Research and Studies, 1(1), 35-46.
[61]. US Public Health Service, & US Department of Health
and Human Services. (2001). Toxicological profile for
asbestos. Atlanta, GA: Agency for Toxic Substances and
Disease Registry.
[62]. Uyyuru, R. K., Surappa, M. K., & Brusethaug, S.
(2006). Effect of reinforcement volume fraction and size
distribution on the tribological behavior of Alcomposite/
brake pad tribo-couple. Wear, 260(11-12),
1248-1255. https://doi.org/10.1016/j.wear.2005.08.011
[63]. Vijay, R., Jees Janesh, M., Saibalaji, M. A., &
Thiyagarajan, V. (2013). Optimization of tribological
properties of nonasbestos brake pad material by using
steel wool. Advances in Tribology, 1-9. https://doi.org/
10.1155/2013/165859
[64]. Wahsltrom, J., Gventsadze, D., Olander, L., Kutelia,
E., Gventsadze, L., & Tsurtsumia, O. (2011). A pin-on-disc
investigation of novel nanoporous composite-based and
conventional brake pad materials focusing on airborne
wear particles. Tribol International, 44(12), 1838-1843.
https://doi.org/10.1016/j.triboint.2011.07.008
[65]. Wahlström, J., Olander, L., & Olofsson, U. (2012). A
pin-on-disc study focusing on how different load levels
affect the concentration and size distribution of airborne
wear particles from the disc brake materials. Tribology
Letters, 46(2), 1838-1843. https://doi.org/10.1016/j.
triboint.2011.07.008
[66]. Xiao, X., Yin, Y., Bao, J., Lu, L., & Feng, X. (2016).
Review on the friction and wear of brake materials.
Advances in Mechanical Engineering, 8(5), 1-10.
https://doi.org/10.1177%2F1687814016647300
[67]. Yun, R., Filip, P., & Lu, Y. (2010-2019). Performance
and evaluation of eco-friendly brake friction materials.
Tribology International, 43(11). https://doi.org/10.1016/
j.triboint.2010.05.001