The knowledge of deformation characteristics is essential for better understanding of basic behaviour of High Strength Concrete (HSC) beams and the mechanism of failure. The large number of investigations was carried out on flexural behavior of HSC beams, but still the major issue of serviceability requirement of the beam is not yet understood properly. The behaviour of HSC is understood over the following headings of cracking moment, load deflection, ductility index, crack width, and ultimate moment carrying capacity. The paper describes the nonlinear Finite Element Modeling (FEM) and analysis of singly reinforced and doubly reinforced HSC beams for flexural behavior. The FEM tool is used to model RCC and calculate the non-linear behavior of the structural RCC members. The 8-noded SOLID-65 element was used to model concrete, that can translate in the x, y, or z-axis directions and reinforcements were modeled as discrete elements using 3D-LINK8 bar element in the ANSYS. A total of nine beams of M100 grade were modeled of overall size 100 mm x 170 mm and varying effective length so that l/d ration is 15, 20, and 25. All the beams were subjected to two point loading with simply supported condition. The analysis were carried out using IS and ACI codes and compared with experimental values and ANSYS results.