When compared with all the conventional materials, different aluminium alloys are gaining their attention in many areas of interest like aerospace, automobile, and manufacturing due to their enhanced mechanical properties. The 2xxx series of aluminium alloy is being used to a large degree due to their augmented properties like a great response to aging, excellent formability, and high strength. In this investigation, research is carried out to understand the changes in the mechanical properties and microstructure characteristics of AA2024 under the influence of various by-products of the industries, which are also known as industrial wastes in the form of reinforcements during the preparation of aluminium metal matrix composites. By this work, usage of industrial solid wastes as reinforcement would reduce the cost of the products in widespread applications. Among various industrial wastes, red mud and fly ash are chosen as reinforcement in preparation of MMC. Stir casting process is used for synthesizing MMC with 2, 4, and 6% weight fractions of nano red mud and fixed weight fraction of micro fly ash each. For the synthesized hybrid composite, experimental tests were carried out for various mechanical properties. It was found that there is a great improvement in the ultimate strengths and hardness with an increase in the weight fractions of the reinforcement, and decrease in the density of the composite with increasing weight fractions of the reinforcement. To examine the microstructure characteristics, Field Emission Scanning Electron Microscope (FESEM) is used for the prepared hybrid composite. It has been found that there has been a uniform distribution of the reinforcement around the matrix. FESEM and EDS results have revealed the presence of nano red mud and fly ash around the matrix and also revealed that absence of any voids or cracks in the prepared hybrid composite.