References
[1]. Celebi, S., Aydin, A. S., Temiz, T. T., & Arici, T. (2013,
February). Gesture recognition using skeleton data with weighted dynamic time warping. In Proceedings of the
International Conference on Computer Vision Theory and
Applications (VISAPP) (pp. 620-625). https://doi.org/10.522
0/0004217606 200625
[2]. El-Baz, A. H., & Tolba, A. S. (2013). An efficient algorithm
for 3D hand gesture recognition using combined neural
classifiers. Neural Computing and Applications, 22(7),
1477-1484. https://doi.org/10.1007/s00521-012-0844-2
[3]. Jacob, M. G., & Wachs, J. P. (2014). Context-based
hand gesture recognition for the operating room. Pattern
Recognition Letters, 36, 196-203. https://doi.org/10.1016/j.patrec.2013.05.024
[4]. Lan, Y., Li, J., & Ju, Z. (2016, July). Data fusion-based
real-time hand gesture recognition with Kinect V2. In 2016,
9th International Conference on Human System
Interactions (HSI) (pp. 307-310). IEEE. https://doi.org/10.1109/HSI.2016.7529649
[5]. Livingston, M. A., Sebastian, J., Ai, Z., & Decker, J. W.
(2012, March). Performance measurements for the
Microsoft Kinect skeleton. In 2012, IEEE Virtual Reality
Workshops (VRW) (pp. 119-120). IEEE. https://doi.org/10.1109/VR.2012.6180911
[6]. Mahbub, U., Imtiaz, H., Roy, T., Rahman, M. S., & Ahad,
M. A. R. (2013). A template matching approach of oneshot-
learning gesture recognition. Pattern Recognition Letters, 34(15), 1780-1788. https://doi.org/10.1016/j.patrec.2012.09.014
[7]. Ohn-Bar, E., & Trivedi, M. M. (2014). Hand gesture
recognition in real time for automotive interfaces: A
multimodal vision-based approach and evaluations. IEEE
Transactions on Intelligent Transportation Systems, 15(6),
2368-2377. https://doi.org/10.1109/TITS.2014.2337331
[8]. Pisharady, P. K., & Saerbeck, M. (2015). Recent
methods and databases in vision-based hand gesture
recognition: A review. Computer Vision and Image
Understanding, 141, 152-165. https://doi.org/10.1016/j.cviu.2015.08.004
[9]. Ren, Z., Yuan, J., Meng, J., & Zhang, Z. (2013). Robust
part-based hand gesture recognition using kinect sensor.
IEEE Transactions on Multimedia, 15(5), 1110-1120. https://doi.org/10.1109/TMM.2013.2246148
[10]. Trail, S., Dean, M., Odowichuk, G., Tavares, T. F.,
Driessen, P. F., Schloss, W. A., & Tzanetakis, G. (2012, May).
Non-invasive sensing and gesture control for pitched
percussion hyper-instruments using the Kinect. In New
Interfaces for Musical Expression (NIME).
[11]. Yoon, H. S., Soh, J., Bae, Y. J., & Yang, H. S. (2001).
Hand gesture recognition using combined features of
location, angle and velocity. Pattern Recognition, 34(7),
1491-1501. https://doi.org/10.1016/S0031-3203(00)00096-0