Preparation of Sr2SiO4:Dy3+  Phosphors by Solid-State Reaction Method and their Thermoluminescence Properties

Durga Verma*, R. P. Patel**
* Department of Applied Physics, Faculty of Engineering and Technology, Shri Shankaracharya Group of Institutions, Chattisgarh, India.
** Department of Physics, Kalinga University, Atal Nagar, Raipur, Chattisgarh, India.
Periodicity:October - December'2019


Sr2SiO4:Dy3+ phosphors were prepared by a conventional solid-state reaction method. In this present study, thermoluminescence (TL) study of Dy3+  doped Sr2SiO4 phosphor is reported. The crystal structure of the prepared phosphor has an orthorhombic structurewith space groupPnma and average crystalline sizes could be calculated as 34 nm. The Fourier-Transform Infrared spectroscopy (FTIR) confirms the present elements in Sr2SiO4:Dy3+ phosphor and energy band gap were founded by optical absorption spectra.Thermoluminescence study was carried out for the phosphor which shows a single glow curve.The kinetic parameter has been calculated by using Chen’s glow curve method.


XRD, FTIR, Thermoluminescence, Nanocrystalline Materials

How to Cite this Article?

Verma, D., and Patel, R. P. (2019). Preparation of Sr2SiO4:Dy3+  Phosphors by Solid-State Reaction Method and their Thermoluminescence Properties. i-manager’s Journal on Material Science, 7(3), 1-7.


[1]. Buchholz, D. B., Liu, J., Marks, T. J., Zhang, M., & Chang, R. P. (2009). Control and characterization of the structural, electrical, and optical properties of amorphous zinc− indium− tin oxide thin films. ACS applied materials & interfaces, 1(10), 2147-2153. am900321f
[2]. Bos, A. J. J. (2006). Theory of thermoluminescence. Radiation Measurements, 41, S45-S56. 1016/j.radmeas.2007.01.003
[3]. Catti, M., Gazzoni, G., & Ivaldi, G. (1983). Structures of twinned β- Sr SiO 2 4and of α′-Sr1.9Ba0.1SiO4. Acta Crystallographic Section C, 39(1), 29-34. 10.1107/S0108270183003492
[4]. Chen, R. (1969a). Glow curves with general order kinetics. Journal of the Electrochemical Society, 116(9), 1254-1257.
[5]. Chen, R. (1969b). Thermally stimulated current curves with non-constant recombination lifetime. Journal of Physics D: Applied Physics, 2(3), 371. 1088/0022-3727/2/3/309
[6]. Dutczak, D., Milbrat, A., Katelnikovas, A., Meijerink, A., Ronda, C., & Jüstel, T. (2012). Yellow persistent luminescence of Sr2SiO4:Eu2+, Dy3+ . Journal of Luminescence, 132(9), 2398-2403. 1016/j.jlumin.2012.03.055
[7]. Dexter, D. L. (1953). A theory of sensitized luminescence in solids. The Journal of Chemical Physics, 21(5), 836-850.
[8]. Furetta, C. (2010). Handbook of Thermolumine Scence (2nd Ed.). Singapore: World Scientific.
[9]. Feldmann, C., Jüstel, T., Ronda, C. R., & Schmidt, P. J. (2003). Inorganic luminescent materials: 100 years of research and application. Advanced Functional Materials, 13(7), 511-516. fm.200301005
[10]. Guo, H., Wang, X., Zhang, X., Tang, Y., Chen, L., & Ma, C. (2010). Effect of NH4F flux on structural and luminescent properties of Sr SiO:Eu phosphors prepared by solid-state reaction method. Journal of the Electrochemical Society, 157(8), 310-314. 10.1149/1.3454723
[11]. Gökçe, M., Oğuz, K. F., Karali, T., & Prokic, M. (2009). Influence of heating rate on thermoluminescence of Mg2SiO4:Tb dosimeter. Journal of Physics D: Applied 2 4 Physics, 42(10), 105412-105416. /0022-3727/42/10/105412
[12]. Gou, Z., Chang, J., & Zhai, W. (2005). Preparation and characterization of novel bioactive dicalcium silicate ceramics. Journal of the European Ceramic Society, 25(9), 1507-1514. rceramsoc.2004.05.029
[13]. Ichikawa, T., Inoue, Y. & Shibata, K. (1975). Characteristics of thermoluminescence bands of intact leaves and isolated chloroplasts in relation to the watersplitting activity in photosynthesis. Biochimicaet Biophysica Acta, 408(3), 228-239. 1016/0005-2728(75)90126-7
[14]. Jüstel, T., Nikol, H., & Ronda, C. (1998). New developments in the field of luminescent materials for lighting and displays. Angewandte Chemie International Edition, 37(22), 3084-3103. (SICI)1521-3773(19981204)37:22<3084::AID-ANIE3 084>3.0.CO;2-W
[15]. Kim, J. S., Jeon, P. E., Choi, J. C., & Park, H. L. (2005). Emission color variation of Mg2SiO4:Eu2+ (M= Ba, Sr, Ca) phosphors for light-emitting diode. Solid State Communications, 133,187-190. /j.ssc.2004.10.017
[16]. Lee, J. H., & Kim, Y. J. (2009). A correlation between a phase transition and luminescence properties of Sr2SiO4:Eu2+ prepared by a flux method. Journal of Ceramic Processing Research, 10(1), 81-84.
[17]. McKeever, S. W. (1988). Thermoluminescence of st Solids (1st Ed.). New York: Cambridge University Press.
[18]. Pan-Lai, L., Zhi-Ping, Y., Zhi-Jun, W., & Qing-Lin, G. (2008). Preparation and luminescence characteristics of Eu2+ activated silicate phosphor. Chinese PhysicsB, 17(3), 1135-1137.
[19]. Pagonis, V., Kitis, G., & Furetta, C. (2006). Numerical and Practical Exercises in Thermoluminescence. USA: Springer Science & Business Media.
[20]. Sahu, I. P., Bisen, D. P., & Brahme, N. (2014). Dysprosium doped di-strontium magnesium di-silicate white light emitting phosphor by solid state reaction method. Displays, 35(5), 279-286. 1016/j.displa.2014.09.006 Sr2SiO4
[21]. Stenberg, L., & Hyde, B. G. (1986). A preliminary electron-microscope study of the β α' transformation of distrontium silicate, . Acta Crystallographica Section B: Structural Science, 42(5), 417-422.
[22]. Tamrakar, R. K., Bisen, D. P., Sahu, I. P., & Brahme, N. (2014). UV and gamma ray induced thermolumine scence properties of cubic Gd2O3 :Er3+ phosphor. Journal of Radiation Research and Applied Science, 7(4), 417- 429.
[23]. Yanmin, Q., Zhang, X., Xiao, Y. E., Yan, C., & Hai, G. (2009). Photoluminescent properties of Sr2SiO4: Eu2+ and Sr2SiO4 :Eu2+ phosphors prepared by solid-state reaction method. Journal of Rare Earths, 27(2), 323-326.
[24]. Yuan, Z. X., Chang, C. K., Mao, D. L., & Ying, W. (2004). Effect of composition on the luminescent properties of Sr4Al14O25 : Eu2+, Dy3+ phosphors. Journal of Alloys and Compound, 377(1), 268-271. 10.1016/j.j allcom.2004.01.063
[25]. Zhang, Y., Chen, X. L., Liang, J. K., & Xu, T. (2003). Phase relations of the system Li2O-Gd2O3 -B2O3 and the structure of a new ternary compound. Journal of Alloys and Compound, 348(1), 314-318. 16/S0925-8388(02)00843-5

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.