Belt Conveyor system is most preferred and cost efficient bulk material handling system. Rubberized flat belt is the main and the costliest component of belt conveyor system. It greatly affects the overall performance of whole system. For large capacity and long distance conveyor, dynamic characteristics plays vital role. In this paper viscoelastic properties of belts are simplified as a series lump mass and their equation of motion is established by Lagrange approach. Inclined belt conveyor for fully loaded condition is studied as a five degree of freedom problem and its transient performance analyzed by simulating 2nd order differential equations with Simulink. Conveyor displacement, velocity, acceleration and dynamic tension during staring transient process reveals the nonlinear viscoelastic characteristics of conveyor belt. Staring pull is requiring being optimum in view of starting belt stresses and safety of drive motor. Output data helps to improve stability and lower down the factor of safety of belt conveyor system.