3, and confirms that 2-aminopyridine barium chloride (2APBC) crystal belongs to the orthorhombic crystal system with noncentrosymmetric space group P212121. Defect less; good quality 2APBC crystal was subjected to linear optical study. UV-vis-NIR spectroscopy study of the grown 2APBC crystal shows good transparency in the entire UV-vis-NIR region with lower cutoff wavelength 383 nm. Optical energy band gap (Eg) was calculated using UV spectrum data. Thermal behaviour of 2APBC sample was carried out using TGA and DTA analysis. The non-linear optical efficiency such as second harmonic generation was measured for 2APBC crystal and the result is compared with known inorganic reference material KDP. The dielectric constant is high at lower frequencies and decreases with increase in frequency trend were observed in dielectric polarization study. Hardness values of the grown crystal were estimated by Vickers's microhardness test.

">

Material Synthesis, Energy Diagram and Physicochemical Properties of Frequency Doubling 2-Aminopyridine Barium Chloride (2APBC) Crystal

D. Sivavishnu*, R. Srineevasan**, J. Johnson***
*,*** Research Scholar, PG and Research Department of Physics, Government Arts College, Tiruvannamalai, Tamil Nadu, India.
** Assistant Professor, PG and Research Department of Physics, Government Arts College, Tiruvannamalai, Tamil Nadu, India.
Periodicity:April - June'2019
DOI : https://doi.org/10.26634/jms.7.1.15360

Abstract

The growth of 2-aminopyridine barium chloride (2APBC) crystal and its optical properties are discussed. 2APBC crystal was grown by slow evaporation solution growth technique at room temperature. FTIR analysis is effectively used for identifying the different molecular bonding and information about functional groups present in the synthesized compound. The powder sample of 2APBC crystal was used in Powder X-Ray Diffraction (PXRD) analysis to confirm the good crystalline nature of the sample. Single crystal X-ray diffraction analyses of grown crystal shows the unit cell lattice parameters value α = 5.281 , β = 5.410 , γ = 14.898 Å, α =β = γ=90º and volume V= 425.638 Å3, and confirms that 2-aminopyridine barium chloride (2APBC) crystal belongs to the orthorhombic crystal system with noncentrosymmetric space group P212121. Defect less; good quality 2APBC crystal was subjected to linear optical study. UV-vis-NIR spectroscopy study of the grown 2APBC crystal shows good transparency in the entire UV-vis-NIR region with lower cutoff wavelength 383 nm. Optical energy band gap (Eg) was calculated using UV spectrum data. Thermal behaviour of 2APBC sample was carried out using TGA and DTA analysis. The non-linear optical efficiency such as second harmonic generation was measured for 2APBC crystal and the result is compared with known inorganic reference material KDP. The dielectric constant is high at lower frequencies and decreases with increase in frequency trend were observed in dielectric polarization study. Hardness values of the grown crystal were estimated by Vickers's microhardness test.

Keywords

Noncentrosymmetric Crystal, XRD, Optical Energy, SHG Energy, Thermal, Dielectric, Stiffness Constant

How to Cite this Article?

Sivavishnu, D., Srineevasan, R., and Johnson, J. (2019). Material Synthesis, Energy Diagram and Physicochemical Properties of Frequency Doubling 2-Aminopyridine Barium Chloride (2APBC) Crystal. i-manager’s Journal on Material Science , 7(1), 1-11. https://doi.org/10.26634/jms.7.1.15360

References

[1]. Abrahams, S. C., & Robertson, J. M. (1948). The crystal structure of p-nitroaniline, NO2. C6H4. NH2. Acta Crystallographica, 1(5), 252-259.
[2]. Arivuselvi, R., & Kumar, A. R. (2016). Growth and characterization of inorganic non linear optical Barium Calcium Borate (BCB) crystal. Materials Letters, 178, 264- 267.
[3]. Arthi, D., Ilango, E., Mercina, M., Jayaraman, D., & Joseph, V. (2017). Growth and structural analysis of an organic NLO compound: l-lysinium picrate. Journal of Molecular Structure, 1127, 156-163.
[4]. Babu, G. A., Bhagavannarayana, G., & Ramasamy, P. (2008). Synthesis, growth, thermal, optical, dielectric and mechanical properties of semi-organic NLO crystal: Potassium hydrogen malate monohydrate. Journal of Crystal Growth, 310(11), 2820-2826.
[5]. Babu, G. A., & Ramasamy, P. (2010). Crystal structure, crystal growth and characterization of novel organic NLO material: 2, 4, 4′-Trimethoxybenzophenone. Materials Chemistry and Physics, 119(3), 533-538.
[6]. Babu, G. A., Ramasamy, R. P., & Ramasamy, P. (2009). Synthesis, crystal growth and characterization of an efficient nonlinear optical D-pi-A type single crystal: 2- Aminopyridinium 4-nitrophenolate 4-nitrophenol. Materials Chemistry and Physics, 117(1), 326-330.
[7]. Balakrishnan, T., & Ramamurthi, K. (2008). Growth, structural, optical, thermal and mechanical properties of glycine zinc chloride single crystal. Materials Letters, 62(1), 65-68.
[8]. Bhuvana, K. P., Jebas, S. R., & Balasubramanian, T. (2010). Optical properties of 2-aminopyridinium nitrato silver. Crystal Research and Technology, 3(45), 299-302.
[9]. Chao, M., Schemp, E., & Rosenstein, R. D. (1975). 3- Aminopyridine. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 31(12), 2924-2926.
[10]. Dhanaraj, P. V., Rajesh, N. P., & Bhagavannarayana, G. (2010). Synthesis, crystal growth and characterization of an organic NLO material: Bis (2-aminopyridinium) maleate. Physica B: Condensed Matter, 405(16), 3441- 3445.
[11]. Dhanasekaran, P., & Srinivasan, K. (2013). Studies on the growth, structural, thermal, mechanical and optical properties of the semiorganic nonlinear optical crystal lglutamic acid hydrobromide. Journal of Physics and Chemistry of Solids, 74(7), 934-942.
[12]. Dharmaprakash, S. M., & Rao, P. M. (1989). Diffusion coefficient of barium ions from Liesegang ring formation. Journal of Materials Science Letters, 8(2), 141-143.
[13]. Ding, Y. J., Mu, X., & Gu, X. (2000). Efficient generation of coherent blue and green light based on frequency conversion in KTiOPO 4 crystals. Journal of Nonlinear Optical Physics & Materials, 9(01), 21-53.
[14]. Donohue, J., & Trueblood, K. (1956). The crystal structure of p-nitroaniline. Acta Crystallographica, 9(11), 960-965.
[15]. Gandhimathi, R., Krishnan, C. M., & Selvarajan, P. (2015). Growth and characterization of manganese sulpho tartrate (MST)-A semiorganic NLO crystal. Optik, 126(21), 2925-2929.
[16]. Ganesh, R. B., Kannan, V., Sathyalakshmi, R., & Ramasamy, P. (2007). The growth of l-Glutamic acid hydrochloride crystals by Sankaranarayanan–Ramasamy (SR) method. Materials Letters, 61(3), 706-708.
[17]. Guangcai, X., Minhua, J., Zongshu, S., & Dong, X. (1987). Bis-thiourea cadmium chloride (BTCC)--A novel nonlinear optical crystal of organometallic complex [J]. Chinese Journal of Lasers, 14, 302-308.
[18]. Jayanalina, T., Rajarajan, G., Boopathi, K., & Sreevani, K. (2015). Synthesis, growth, structural, optical and thermal properties of a new organic nonlinear optical crystal: 2-amino 5-chloropyridinium-L-tartarate. Journal of Crystal Growth, 426, 9-14.
[19]. Katritzky, A. R. (1959). The infrared spectra of heteroaromatic compounds. Quarterly Reviews, Chemical Society, 13(4), 353-373.
[20]. Kurtz, S. K., & Perry, T. T. (1968). A powder technique for the evaluation of nonlinear optical materials. Journal of Applied Physics, 39(8), 3798-3813.
[21]. Laidlaw, W. M., Denning, R. G., Verbiest, T., Chauchard, E., & Persoons, A. (1993). Large secondorder optical polarizabilities in mixed-valency metal complexes. Nature, 363(6424), 58.
[22]. Le Fur, Y., Bagieu-Beucher, M., Masse, R., Nicoud, J. F., & Lévy, J. P. (1996). Crystal engineering of noncentrosymmetric structures based on 2-amino-5- nitropyridine and n-chloroacetic acid assemblies. Chemistry of Materials, 8(1), 68-75.
[23]. Liu, X. J., Wang, Z. Y., Xu, D., Wang, X. Q., Song, Y. Y., Yu, W. T., & Guo, W. F. (2007). Investigation on the microcrystallization of l-arginine trifluoroacetate (LATF) crystals. Journal of Alloys and Compounds, 441(1-2), 323-326.
[24]. Maadeswaran, P., Thirumalairajan, S., & Chandrasekaran, J. (2010). Growth and characterization of a new semiorganic nonlinear optical crystal-Bis (thiourea) lithium chloride. Optik, 121(17), 1620-1624.
[25]. Madhavan, J., Aruna, S., Anuradha, A., Premanand, D., Potheher, I. V., Thamizharasan, K., & Sagayaraj, P. (2007). Growth and characterization of a new nonlinear optical l-histidine acetate single crystals. Optical Materials, 29(9), 1211-1216.
[26]. Menon, C. P., Philip, J., Deepthy, A., & Bhat, H. L. (2001). Thermal properties of glycine phosphite across ferroelectric phase transition: a photopyroelectric study. Materials Research Bulletin, 36(13-14), 2407-2414.
[27]. Misoguti, L., Varela, A. T., Nunes, F. D., Bagnato, V. S., Melo, F. E. A., Mendes Filho, J., & Zilio, S. C. (1996). Optical properties of L-alanine organic crystals. Optical Materials, 6(3), 147-152.
[28]. Mott, B. W. (1956). Micro Indentation Hardness Testing. London: Butterworths.
[29]. Nair, L. P., Bijini, B. R., Prasanna, S., Nair, C. M. K., Deepa, M., & Babu, K. R. (2014). Growth and characterisation of crystals of a new organic complex of thiourea with quinine sulphate dihydrate: An NLO material. Spectrochimica Acta Par t A : Molecular and Biomolecular Spectroscopy, 120, 517-523.
[30]. O'Neill, H. R. (1967). Hardness Measurements of Metals and Alloys. London: Chapman and Hall.
[31]. Onitsch, E. M. (1956). The present status of testing the hardness of materials. Mikroskopie, 95(15), 12-14.
[32]. Pécaut, J., & Masse, R. (1994). 2-Amino-5- nitropyridinium acetophosphonate: a deliberately engineered non-linear optical crystal. Journal of Materials Chemistry, 4(12), 1851-1854.
[33]. Periyasamy, B. K., Jebas, R. S., & Thailampillai, B. (2007). Synthesis and spectral studies of 2- aminopyridinium para-nitrobenzoate: A novel optoelectronic crystal. Materials Letters, 61(7), 1489- 1491.
[34]. Periyasamy, B. K., Jebas, R. S., Gopalakrishnan, N., & Balasubramanian, T. (2007). Development of NLO tunable band gap organic devices for optoelectronic applications. Materials Letters, 61(21), 4246-4249.
[35]. Prakash, M. J., & Radhakrishnan, T. P. (2005). SHG active salts of 4-nitrophenolate with h-bonded helical formations : structure-directing role of ortho-aminopyridines. Crystal Growth & Design, 5(2), 721-725.
[36]. Qin, J., Su, N., Dai, C., Yang, C., Liu, D., Day, M. W., ... & Chen, C. (1999). A tetrahedral coordination compound for second-order nonlinear optics: synthesis, crystal structure and SHG of Zn (2-NH2py) 2Cl2. Polyhedron, 18(26), 3461-3464.
[37]. Rajkumar, M. A., Xavier, S. S. J., Anbarasu, S., & Devarajan, P. A. (2016). Growth and characterization studies of an efficient semiorganic NLO single crystal: 2- Amino 5-nitropyridinium sulfamate (2A5NPS) by assembled temperature reduction (ATR) method. Optical Materials, 55, 153-159.
[38]. Rose, A. L., Selvarajan, P., & Perumal, S. (2011). Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid a d mixtured L- alanine (PLA) single crystals. Spectrochimica Acta Par t A : Molecular and Biomolecular Spectroscopy, 81(1), 270-275.
[39]. Roshan, S. A., Joseph, C., & Ittyachen, M. A. (2001). Growth and characterization of a new metal-organic crystal: potassium thiourea bromide. Materials Letters, 49(5), 299-302.
[40]. Schilt, A. A., & Taylor, R. C. (1959). Infra-red spectra of 1: 10-phenanthroline metal complexes in the rock salt  region below 2000 cm-1. Journal of Inorganic and Nuclear Chemistry, 9(3-4), 211-221.
[41]. Singh, B. K., Sinha, N., Singh, N., Kumar, K., Gupta, M. K., & Kumar, B. (2010). Structural, dielectric, optical and ferroelectric property of urea succinic acid crystals grown in aqueous solution containing maleic acid. Journal of Physics and Chemistry of Solids, 71(12), 1774-1779.
[42]. Sinha, N., Singh, B. K., Kumar, K., Singh, N., Gupta, M. K., Budakoti, G. C., & Kumar, B. (2009). Solution growth and comparative characterization of L-HFB single crystals. Cr ystal Research and Technology: Journal of Experimental and Industrial Crystallography, 44(2), 167- 172.
[43]. Sivavishnu, D., Srineevasan, R., & Johnson, J. (2018). Synthesis, growth, optical, band gap energy and mechanical properties of semiorganic nonlinear optical material: 2-Aminopyridine potassium dihydrogen orthophosphate lithium chloride (2APKDPL) crystal. Materials Science for Energy Technologies, 1(2), 205-214.
[44]. Smyth, C. P. (1965). Dielectric Behaviour and Structure. MeGraw Hill, New York: McGraw-Hill.
[45]. Srineevasan, R., & Rajasekaran, R. (2013). Growth and optical studies of 2-aminopyridine bis thiourea zinc sulphate (2-APTZS) single crystals for NLO applications. Journal of Molecular Structure, 1048, 238-243.
[46]. Srineevasan, R., & Rajasekaran, R. (2014a). Growth and Characterization of new centrosymmetric 2- aminopyridine potassium chloride single crystal for NLO applications. Elixir Crystal Growth, 66, 20551-20555.
[47]. Srineevasan, R., & Rajasekaran, R. (2014b). Growth, optical, thermal and dielectric studies on 2- Aminopyridine potassium thiocynate glycine (2-APKSNG) crystal for NLO applications. Journal of Optoelectronics and Advanced Materials, 16(1-2), 65-69.
[48]. Swaminathan, K., & Irving, H. M. N. H. (1964). Infrared absorption spectra of complexes of thiourea. Journal of Inorganic and Nuclear Chemistry, 26(7), 1291-1294.
[49]. Ushasree, P. M., Jayavel, R., & Ramasamy, P. (1999). Growth and characterisation of phosphate mixed ZTS single crystals. Materials Science and Engineering: B, 65(3), 153-158.
[50]. Xiaoming, J., Yunlan, H., & Ziqin, W. (1987). X-ray diffraction study of icosahedral phase in rapidly quenched A1-Mn. Chinese Physics Letters, 4(8), 357-360.
[51]. Xue, D., & Zhang, S. (1999). Effect of hydrogen bonds on optical nonlinearities of inorganic crystals. Chemical Physics Letters, 301(5-6), 449-452.
[52]. Yu, D., Xue, D., & Ratajczak, H. (2006). Bond-valence parameters for characterizing O-H⋯ O hydrogen bonds in hydrated borates. Journal of Molecular Structure, 792, 280-285.
[53]. Zaccaro, J., Capelle, B., & Ibanez, A. (1997). Crystal growth of hybrid nonlinear optical materials: 2-amino-5- nitropyridinium dihydrogenphosphate and dihydrogenarsenate. Journal of Crystal Growth, 180(2), 229-237.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.