2 annealed at 600oC was found to be anatase phase and annealed at 800oC was found to be rutile phase. The crystalline size of anatase TiO2 is about 17 nm and rutile is about 50nm. The characteristic IR bandobserved from 400 to 900 cm−1corresponds to the Ti–O bond stretching vibrations can be clearly observed from FTIR analysis. The indirect band gap energy of rutile TiOis about 2.83 eV and anatase TiOis about 3.00 eV.Photocatalytic activity of TiO2 was evaluated by photocatalytic degradation of methylene blue (MB) dye in aqueous solution as a model pollutant under visible light irradiation. Aanatase TiO2 exhibited more efficient PCA than the rutile TiO2. After 4h photodegradation of MB solution was obtained to 96% foranatase TiO2 and 90% for rutile. The small crystallite size and anatase phase probably resulted in the high photocatalytic activity of TiO2.

">

Structural, Optical and Photocatalytic Properties of Anatase/Rutile TiO2 Nanoparticles

Eppa Radha*, Durgam Komaraiah**, M. V. Ramana Reddy***, R. Sayanna****, J. Sivakumar*****
*_** PhD Scholar, Department of Physics, Osmania University, Hyderabad, Telangana, India.
***, ***** Professor, Department of Physics, Osmania University, Hyderabad, Telangana, India.
**** Professor (Rtd), Department of Physics, Osmania University, Hyderabad, Telangana, India.
Periodicity:October - December'2018
DOI : https://doi.org/10.26634/jms.6.3.15318

Abstract

Titania photocatalyst was synthesized by sol-gel method using titanium tetra isopropoxide (TTIP) as a precursor. The TiO2 was annealed at 600oC and 800oC and then characterized by X-ray diffractometer (XRD), UV-Vis DRSand FTIR spectroscopy. X-ray diffraction analysis confirms that the TiO2 annealed at 600oC was found to be anatase phase and annealed at 800oC was found to be rutile phase. The crystalline size of anatase TiO2 is about 17 nm and rutile is about 50nm. The characteristic IR bandobserved from 400 to 900 cm−1corresponds to the Ti–O bond stretching vibrations can be clearly observed from FTIR analysis. The indirect band gap energy of rutile TiOis about 2.83 eV and anatase TiOis about 3.00 eV.Photocatalytic activity of TiO2 was evaluated by photocatalytic degradation of methylene blue (MB) dye in aqueous solution as a model pollutant under visible light irradiation. Aanatase TiO2 exhibited more efficient PCA than the rutile TiO2. After 4h photodegradation of MB solution was obtained to 96% foranatase TiO2 and 90% for rutile. The small crystallite size and anatase phase probably resulted in the high photocatalytic activity of TiO2.

Keywords

TiO2 Nanoparticles, Photocatalytic Degradation, Methylene Blue.

How to Cite this Article?

Radha, E., Komaraiah, D., Reddy, M. V. R., Sayanna, R., and Sivakumar, J. (2018). Structural, Optical and Photocatalytic Properties of Anatase/Rutile TiO2 Nanoparticles. i-manager’s Journal on Material Science, 6(3), 43-49. https://doi.org/10.26634/jms.6.3.15318

References

[1]. Anitha, B., Ravidhas, C., Venkatesh, R., Raj, A. M. E., Ravichandran, K., Subramanian, B., & Sanjeeviraja, C. (2017). Self assembled sulfur induced interconnected nanostructure TiO electrode for visible light 2 photoresponse and photocatalytic application. Physica E: Low-Dimensional Systems and Nanostructures, 91, 148- 160.
[2]. Choudhury, B., & Choudhury, A. (2013). Tailoring luminescence properties of TiO nanoparticles by Mn 2 doping. Journal of Luminescence, 136, 339-346.
[3]. Cullity, B. D. (1978). Elements of X-ray Diffraction, 2nd Edition. London: Addison-Wesley Publishing Company Inc.
[4]. de Niederhausern, S., Bondi, M., & Bondioli, F. (2013). Self Cleaning and Antibacteric Ceramic Tile Surface. International Journal of Applied Ceramic Technology, 10(6), 949-956.
[5]. Dinh, N. N., Oanh, N. T. T., Long, P. D., Bernard, M. C., & Hugot-Le Goff, A. (2003). Electrochromic properties of TiO anatase thin films prepared by a dipping sol–gel 2 method. Thin Solid Films, 423(1), 70-76.
[6]. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
[7]. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595-6663.
[8]. He, Z., Que, W., Chen, J., He, Y., & Wang, G. (2013). Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. Journal of Physics and Chemistry of Solids, 74(7), 924-928.
[9]. Komaraiah, D., Madhukar, P., Vijayakumar, Y., Reddy, M. R., & Sayanna, R. (2016). Photocatalytic degradation study of methylene blue by brookite TiO2 thin film under visible light irradiation. Materials Today: Proceedings, 3(10), 3770-3778.
[10]. Linacero, R., Aguado-Serrano, J., & Rojas- Cervantes, M. L. (2006). Preparation of mesoporous TiO2 by the sol-gel method assisted by surfactants. Journal of Materials Science, 41(8), 2457-2464.
[11]. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43(14), 2229-2246.
[12]. More, A. M., Gunjakar, J. L., & Lokhande, C. D. (2008). Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 129(2), 671-677.
[13]. Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
[14]. Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103-111.
[15]. Naoi, K., Ohko, Y., & Tatsuma, T. (2004). TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior. Journal of the American Chemical Society, 126(11), 3664-3668.
[16]. Ohko, Y., Utsumi, Y., Niwa, C., Tatsuma, T., Kobayakawa, K., Satoh, Y., … Fujishima, A. (2001). Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research, 58(1), 97-101.
[17]. Pinho, L., & Mosquera, M. J. (2011). Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. The Journal of Physical Chemistry C, 115(46), 22851-22862.
[18]. Quagliarini, E., Bondioli, F., Goffredo, G. B., Cordoni, C., & Munafo, P. (2012). Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construction and Building Materials, 37, 51-57.
[19]. Quagliarini, E., Bondioli, F., Goffredo, G. B., Licciulli, A., & Munafò, P. (2013). Self-cleaning materials on architectural heritage: Compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. Journal of Cultural Heritage, 14(1), 1-7.
[20]. Riaz, N., Bustam, M. A., Chong, F. K., Man, Z. B., Khan, M. S., & Shariff, A. M. (2014). Photocatalytic Degradation of DIPA using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation. The Scientific World Journal, 2014, 1-8.
[21]. Wang, B., Zhang, G., Sun, Z., & Zheng, S. (2014). Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation. Powder Technology, 262, 1-8.
[22]. Yan, X., He, J., Evans, D. G., Zhu, Y., & Duan, X. (2004). Preparation, characterization and photocatalytic activity of TiO2 formed from a mesoporous precursor. Journal of Porous Materials, 11(3), 131-139.
[23]. Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., ... & Grätzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629-634.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.