References
[1]. Anitha, B., Ravidhas, C., Venkatesh, R., Raj, A. M. E., Ravichandran, K., Subramanian, B., & Sanjeeviraja, C. (2017). Self assembled sulfur induced interconnected nanostructure TiO electrode for visible light 2 photoresponse and photocatalytic application. Physica E: Low-Dimensional Systems and Nanostructures, 91, 148- 160.
[2]. Choudhury, B., & Choudhury, A. (2013). Tailoring luminescence properties of TiO nanoparticles by Mn 2 doping. Journal of Luminescence, 136, 339-346.
[3]. Cullity, B. D. (1978). Elements of X-ray Diffraction, 2nd Edition. London: Addison-Wesley Publishing Company Inc.
[4]. de Niederhausern, S., Bondi, M., & Bondioli, F. (2013). Self Cleaning and Antibacteric Ceramic Tile Surface. International Journal of Applied Ceramic Technology, 10(6), 949-956.
[5]. Dinh, N. N., Oanh, N. T. T., Long, P. D., Bernard, M. C., & Hugot-Le Goff, A. (2003). Electrochromic properties of TiO anatase thin films prepared by a dipping sol–gel 2 method. Thin Solid Films, 423(1), 70-76.
[6]. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 238(5358), 37-38.
[7]. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595-6663.
[8]. He, Z., Que, W., Chen, J., He, Y., & Wang, G. (2013). Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. Journal of Physics and Chemistry of Solids, 74(7), 924-928.
[9]. Komaraiah, D., Madhukar, P., Vijayakumar, Y., Reddy, M. R., & Sayanna, R. (2016). Photocatalytic degradation study of methylene blue by brookite TiO2 thin film under visible light irradiation. Materials Today: Proceedings, 3(10), 3770-3778.
[10]. Linacero, R., Aguado-Serrano, J., & Rojas- Cervantes, M. L. (2006). Preparation of mesoporous TiO2 by the sol-gel method assisted by surfactants. Journal of Materials Science, 41(8), 2457-2464.
[11]. Mo, J., Zhang, Y., Xu, Q., Lamson, J. J., & Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 43(14), 2229-2246.
[12]. More, A. M., Gunjakar, J. L., & Lokhande, C. D. (2008). Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors and Actuators B: Chemical, 129(2), 671-677.
[13]. Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169-189.
[14]. Nakata, K., Ochiai, T., Murakami, T., & Fujishima, A. (2012). Photoenergy conversion with TiO2 photocatalysis: New materials and recent applications. Electrochimica Acta, 84, 103-111.
[15]. Naoi, K., Ohko, Y., & Tatsuma, T. (2004). TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior. Journal of the American Chemical Society, 126(11), 3664-3668.
[16]. Ohko, Y., Utsumi, Y., Niwa, C., Tatsuma, T., Kobayakawa, K., Satoh, Y., … Fujishima, A. (2001). Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research, 58(1), 97-101.
[17]. Pinho, L., & Mosquera, M. J. (2011). Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. The Journal of Physical Chemistry C, 115(46), 22851-22862.
[18]. Quagliarini, E., Bondioli, F., Goffredo, G. B., Cordoni, C., & Munafo, P. (2012). Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construction and Building Materials, 37, 51-57.
[19]. Quagliarini, E., Bondioli, F., Goffredo, G. B., Licciulli, A., & Munafò, P. (2013). Self-cleaning materials on architectural heritage: Compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces. Journal of Cultural Heritage, 14(1), 1-7.
[20]. Riaz, N., Bustam, M. A., Chong, F. K., Man, Z. B., Khan, M. S., & Shariff, A. M. (2014). Photocatalytic Degradation of DIPA using Bimetallic Cu-Ni/TiO2 Photocatalyst under Visible Light Irradiation. The Scientific World Journal, 2014, 1-8.
[21]. Wang, B., Zhang, G., Sun, Z., & Zheng, S. (2014). Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation. Powder Technology, 262, 1-8.
[22]. Yan, X., He, J., Evans, D. G., Zhu, Y., & Duan, X. (2004). Preparation, characterization and photocatalytic activity of TiO2 formed from a mesoporous precursor. Journal of Porous Materials, 11(3), 131-139.
[23]. Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., ... & Grätzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334(6056), 629-634.