References
[1]. Babu, N., Kumar, A., & Davidson, M. (2011). A review of friction stir welding of AA6061 aluminum alloy. J. Eng. Appl. Sci., 6(4), 61-63.
[2]. Bahrami, M., Givi, M. K. B., Dehghani, K., & Parvin, N. (2014). On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique. Materials & Design, 53, 519-527.
[3]. Cavaliere, P., Campanile, G., Panella, F., & Squillace, A. (2006). Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding. Journal of Materials Processing Technology, 180(1-3), 263-270.
[4]. Chauhan, A. (2017). An overview of friction stir welding process and parameters of aluminium alloys. Research Journal of Engineering and Technology, 8(4), 306-310.
[5]. Chauhan, A., & Kumar, S. (2017a). An overview of friction stir welding of magnesium alloys. Journal of Emerging Technologies and Innovative Research, 4(10), 306-311.
[6]. Chauhan, A., & Kumar, S. (2017b). Influence of tool rotation on impact strength of friction stir welded joints of AA2014 aluminium alloy plates. International Journal of Manufacturing Science and Engineering, 8(2), 141-145.
[7]. Chauhan, A., & Kumar, S. (2018). An overview of friction stir welding of metal matrix composites. IAETSD Journal for Advanced Research in Applied Sciences, 5(1), 236-242.
[8]. Franchim, A. S., Fernandez, F. F., & Travessa, D. N. (2011). Microstructural aspects and mechanical properties of friction stir welded AA2024-T3 aluminium alloy sheet. Materials & Design, 32(10), 4684-4688.
[9]. Hema, P., & Ravindranath, K. (2017). Prediction of effect of process parameters on friction stir welded joints of dissimilar aluminium alloy AA2014 & AA6061 using taper pin profile. Materials Today: Proceedings, 4(2), 2174-2183.
[10]. Hosseini, M., & Manesh, H. D. (2010). Immersed friction stir welding of ultrafine grained accumulative rollbonded Al alloy. Materials & Design, 31(10), 4786-4791.
[11]. Lammlein, D. H., DeLapp, D. R., Fleming, P. A., Strauss, A. M., & Cook, G. E. (2009). The application of shoulderless conical tools in friction stir welding: An experimental and theoretical study. Materials & Design, 30(10), 4012-4022.
[12]. Lockwood, W. D., Tomaz, B., & Reynolds, A. P. (2002). Mechanical response of friction stir welded AA2024: experiment and modeling. Materials Science and Engineering: A, 323(1-2), 348-353.
[13]. Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1-2), 1-78.
[14]. Muruganandam, D., Ravikumar, S., & Das, S. L. (2010, November). Mechanical and micro structural behavior of 2024–7075 aluminium alloy plates joined by friction stir welding. In Frontiers in Automobile and Mechanical Engineering-2010 (pp. 247-251). IEEE.
[15]. Nandan, R., Debroy, T., & Bhadeshia, H. K. D. H. (2008). Recent advances in friction-stir welding–process, weldment structure and properties. Progress in Materials Science, 53(6), 980-1023.
[16]. Panda, B., Garg, A., Jian, Z., Heidarzadeh, A., & Gao, L. (2016). Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed. Frontiers of Mechanical Engineering, 11(3), 289-298.
[17]. Prasanna, P., Penchalayya, C., & Rao, D. (2013). Optimization and validation of process parameters in friction stir welding on AA6061 aluminum alloy using gray relational analysis. International Journal of Engineering Research and Applications (IJERA), 3(1), 1471-1481.
[18]. Rajakumar, S., & Balasubramanian, V. (2012). Correlation between weld nugget grain size, weld nugget hardness and tensile strength of friction stir welded commercial grade aluminium alloy joints. Materials & Design, 34, 242-251.
[19]. Rajakumar, S., Muralidharan, C., & Balasubramanian, V. (2011). Predicting tensile strength, hardness, and corrosion rate of friction stir welded AA6061-T6 aluminium alloy joints. Materials & Design, 32(5), 2878-2890.
[20]. Rhodes, C. G., Mahoney, M. W., Bingel, W. H., Spurling, R. A., & Bampton, C. C. (1997). Effects of friction stir welding on microstructure of 7075 aluminum. Scripta Materialia, 36(1), 69-75.
[21]. Rui-Dong, F., Zeng-Qiang, S., Rui-Cheng, S., Ying, L., Hui-jie, L., & Lei, L. (2011). Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding. Materials & Design, 32(10), 4825-4831.
[22]. Simar, A., Bréchet, Y., De Meester, B., Denquin, A., Gallais, C., & Pardoen, T. (2012). Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Progress in Materials Science, 57(1), 95-183.
[23]. Thomas, W. M., Nicholas, E. D., Needham, J. C., Murch, M. G., Templesmith, P., & Dawes, C. J. (1991). GB Patent application no. 9125978.8. International Patent Application no. PCT/GB92/02203.
[24]. Trimble, D., O'Donnell, G. E., & Monaghan, J. (2015). Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3. Journal of Manufacturing Processes, 17, 141-150.
[25]. Zahmatkesh, B., Enayati, M. H., & Karimzadeh, F. (2010). Tribological and microstructural evaluation of friction stir processed Al2024 alloy. Materials & Design, 31(10), 4891-4896.
[26]. Zhi-Hong, F. U., Di-Qiu, H., & Hong, W. (2004). Friction stir welding of aluminum alloys. Journal of Wuhan University of Technology-Mater. Sci. Ed., 19(1), 61-64.
[27]. Zhu, M. L., & Xuan, F. Z. (2010). Correlation between microstructure, hardness and strength in HAZ of dissimilar welds of rotor steels. Materials Science and Engineering: A, 527(16-17), 4035-4042.