References
[1]. Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., ... & Kannan, N. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
[2]. Azarderakhsh, M., Rossow, W. B., Papa, F., Norouzi, H., & Khanbilvardi, R. (2011). Integrating Terrestrial Water Balance in the Amazon Basin using Remote Sensing Data. Journal of Geophysical Research, 116, 148-227.
[3]. Bhange, H. N., Deshmukh, V. V., Rajankar, P. B., Ayare, B. L., Gharde, K. D., & Patil, S. T. (2015). Estimation of Runoff from Watershed using Remote Sensing and GIS. International Journal of Engineering Innovation & Research, 3(6).
[4]. Bhattacharya, T., Aggarwal, S. P., & Garg, V. (2013). Estimation of water balance components of Chambal River basin using a macroscale hydrology model. International Journal of Engineering Innovation & Research, 3(2), 1-6.
[5]. Golmohammadi, G., Rudra, R., Prasher, S., Madani, A., Mohammadi, K., Goel, P., & Daggupatti, P. (2017). Water budget in a tile drained watershed under future climate change using SWATDRAIN model. Climate, 5(2), 39.
[6]. McCabe, G. J., & Wolock, D. M. (2013). Temporal and spatial variability of the global water balance. Climatic Change, 120(1-2), 375-387.
[7]. Gunkel, A., Shadeed, S., Hartmann, A., Wagener, T., & Lange, J. (2015). Model signatures and aridity indices enhance the accuracy of water balance estimations in a data-scarce Eastern Mediterranean catchment. Journal of Hydrology: Regional Studies, 4, 487-501.
[8]. Gupta, A., Thakur, P. K., Nikam, B. R., & Chouksey, A. (2014). Water balance study of Narmada River Basin: An Integrated Approach using Remote Sensing and GIS Tools and Techniques. Proceedings of the 3rd National Conference on Trends and Recent Advances in Civil Engineering (TRACE).
[9]. Gupta, P., Nayak, T. R., & Choudhary, M. K. (2015). GIS based water balance study for estimation of runoff in a small river watershed. Journal of Indian Water Resources Society, 35(3), 26-33.
[10]. Herrmann, F., Keller, L., Kunkel, R., Vereecken, H., & Wendland, F. (2015). Determination of spatially differentiated water balance components including groundwater recharge on the Federal State level–A case study using the mGROWA model in North Rhine-Westphalia (Germany). Journal of Hydrology: Regional Studies, 4, 294- 312.
[11]. Jain, S. K., Jain, S. K., Hariprasad, V., & Choudhry, A. (2011). Water balance study for a basin integrating remote sensing data and GIS. Journal of the Indian Society of Remote Sensing, 39(2), 259-270.
[12]. Jian, S., Zhao, C., Fang, S., & Yu, K. (2015). Effects of different vegetation restoration on soil water storage and water balance in the Chinese Loess Plateau. Agricultural and Forest Meteorology, 206, 85-96.
[13]. Kanga, S., Sharma, L. K., Pandey, P. C., Nathawat, M. S., & Sinha, S. (2011). Geospatial approach for allocation of potential tourism gradient sites in a part of Shimla District in Himachal Pradesh, India. Journal of GIS Trends, 2(1), 1-6.
[14]. Kanga S., & Singh S. K. (2017). Forest fire simulation modeling using remote sensing & GIS. International Journal of Advanced Research in Computer Science, 8(5), 326- 332.
[15]. Kanga, S., & Singh, S. K. (2017). Role of GIS in Creation of Spatial Socio Economic Indicators of Bilaspur District, HP (India). Journal of Arts, Science and Commerce International Refereed Research Journal, 2(10), 48-55.
[16]. Kanga, S., Sharma, L. K., & Nathawat, M. S. (2015). Himalayan Forest Fires Risk Management: A Geospatial Approach. Lambert Academic Publishing.
[17]. Kanga, S. (2017). Forest cover and land use mapping using remote sensing and GIS Technology. Suresh Gyan Vihar University Journal of Climate Change and Water, 1(2), 13-17.
[18]. Klöcking, B., & Haberlandt, U. (2002). Impact of land use changes on water dynamics––A case study in temperate meso and macroscale river basins. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 619-629.
[19]. Krysanova, V., Bronstert, A., & Müller-Wohlfeil, D. I. (1999). Modelling river discharge for large drainage basins: From lumped to distributed approach. Hydrological Sciences Journal, 44(2), 313-331.
[20]. Móricz, N. (2010). Water balance study of a groundwater-dependent oak forest. Acta Silvatica Et Lignaria Hungarica: An International Journal in Forest, Wood And Environmental Sciences, 6, 49-66.
[21]. Pal, B., & Samanta, S. (2011). Surface runoff estimation and mapping using remote sensing and geographic information system. Int. J. Adv. Sci. Technol., 3(2), 106-114.
[22]. Panagopoulos, A., Arampatzis, G., Kuhr, P., Kunkel, R., Tziritis, E., & Wendland, F. (2015). Area-differentiated modeling of water balance in Pinios river Basin, central Greece. Global NEST Journal, 17(2), 221-235.
[23]. Raghavendra, R. K., & Cholke, S. (2017). Assessment of watershed based water balance for Irrigation Scheduling through Geospatial Technique. International Journal of Engineering Technology Science and Research (IJETSR), 4(8), 1128-1134.
[24]. Shen, H., Leblanc, M., Frappart, F., Seoane, L., O'grady, D., Olioso, A., & Tweed, S. (2017). A comparative study of GRACE with continental evapotranspiration estimates in Australian semi-arid and arid basins: Sensitivity to climate variability and extremes. Water, 9(9), 614.
[25]. Singh, S. K., Mishra, S. K., & Kanga, S. (2017). Delineation of groundwater potential zone using geospatial techniques for Shimla city, Himachal Pradesh (India). International Journal for Scientific Research and Development, 5(4), 225-234.
[26]. Singh, S. K., Saklani, B., Prakash, S., Chauhan, R., & Gupta, H. (2014). Geospatial Approach for Decentralised Planning at Rajhana Panchayat, Himachal Pradesh. International Journal of Advancement in Remote Sensing, GIS and Geography, 2(2), 27-43.
[27]. Thapa, B. R., Ishidaira, H., Pandey, V. P., & Shakya, N. M. (2017). A multi-model approach for analyzing water balance dynamics in Kathmandu Valley, Nepal. Journal of Hydrology: Regional Studies, 9, 149-162.
[28]. Thompson, S. E., Harman, C. J., Troch, P. A., Brooks, P. D., & Sivapalan, M. (2011). Spatial scale dependence of ecohydrologically mediated water balance partitioning: A synthesis framework for catchment ecohydrology. Water Resources Research, 47(10),143-158.
[29]. Uniyal, B., Jha, M. K., & Verma, A. K. (2015). Assessing climate change impact on water balance components of a river basin using SWAT model. Water Resources Management, 29(13), 4767-4785.
[30]. Usmanov, S., Mitani, Y., & Kusuda, T. (2016). An integrated hydrological model for water balance estimation in the Chirchik River Basin, Northern Uzbekistan. Computational Water, Energy, and Environmental Engineering, 5(3), 87-97.
[31]. White, E. D., Easton, Z. M., Fuka, D. R., Collick, A. S., Adgo, E., McCartney, M., & Steenhuis, T. S. (2011). Development and application of a physically based landscape water balance in the SWAT model. Hydrological Processes, 25(6), 915-925.
[32]. Yang, Y., Liu, Y., Cao, S., & Cheng, Y. (2017). A method of evaluating water resource assets and liabilities: A case study of Jinan City, Shandong Province. Water, 9(8), 575.
[33]. Yin, Z., Feng, Q., Zou, S., & Yang, L. (2016). Assessing variation in water balance components in mountainous inland river basin experiencing climate change. Water, 8(10), 472.
[34]. Zhang, D., Chen, X., Yao, H., & Lin, B. (2015). Improved calibration scheme of SWAT by separating wet and dry seasons. Ecological Modelling, 301, 54-61.