Reversible Logic is the dominating field of research in low power VLSI. In recent times, reversible logic has gained special attention in order to reduce power consumption mainly in concern to digital logic design. The main aim of this paper is to give an overall summary report on Digital sequential circuits like Shift registers and Counters designed using reversible logical computation. Digital circuits are the circuits implemented using Boolean logical expressions. Digital circuits find many applications in present daily life. Different types of combinational and sequential circuits are designed using reversible logic to reduce power dissipation. A Boolean function f(i1, i2, i3,……, in) having 'n' inputs and 'm' outputs is said to be logically reversible if the number of inputs are equal to the number of outputs (i.e. n = m) and the input pattern maps uniquely to the output pattern. Few reversible logic gates present in the literature are NOT gate, Feynman Gate (CNOT gate), Double Feynman Gate, Peres Gate, TR gate, Seynman Gate, etc. The reversible gate must run both forward and backward directions such that the inputs can be retrieved with the knowledge of outputs. Reversible Logic has applications in various fields like Quantum Computing, Optical Computing, Nano-technology, Computer Graphics, low power VLSI, etc. Reversible logic has gained essence in recent years largely due to its property of low power consumption and low heat dissipation. Till date in the literature, universal shift register and shift counters are realized using reversible logical computation for the first time in this paper. In this paper, a summary report is given on Sequential circuits like Shift registers and Counters designed using reversible logical computation with improved quantum cost. A comparative study on reversible and irreversible sequential logical circuits is also given. The realized reversible logical circuits are analysed in terms of quantum cost, garbage outputs, number of gates, and propagation delay. The circuits have been designed and simulated using Xilinx software.