2 (CIS) thin film grown by using very economical chemical bath deposition method. Bath temperature was kept constant at 80oC. The main aim of this work is to synthesize a good photosensitive semiconducting film which can be used in photovoltaic devices like solar cells. The SEM images shows that the synthesized film is uniform, densely packed with cubic like grains. X-ray diffractogram confirms chalcopyrite and wurtzite phase of CuInS2. Absorption peaks are blue shifted which is due to decrease in particle size. EDAX shows that synthesized film is non-stoichiometric and confirms the doping of Ho. It is found that initially transmittance is low in UV region but increases in visible region. Higher transmittance of 90% is obtained between 540-620nm. Thus this film can be used in solar cells. Reflectance is low in the synthesized film showing that the film is anti reflection substance. The Ho doped film possesses larger band gap of 2.2 eV as compare to bulk film of CuInS2 which is due to reduced particle size. Refractive index and extinction coefficient calculated in this film are 1.79 and 0.03 respectively. Ho doped CuInS2 film is quite good photosensitive material. A strong emission peak is obtained at a wavelength of 630 nm in the IR region. The photoconductive gain calculated for the sample is ~2.6×104,which is quite good.
">This paper reported a rare earth Holmium (Ho) doped copper indium sulphide CuInS2 (CIS) thin film grown by using very economical chemical bath deposition method. Bath temperature was kept constant at 80oC. The main aim of this work is to synthesize a good photosensitive semiconducting film which can be used in photovoltaic devices like solar cells. The SEM images shows that the synthesized film is uniform, densely packed with cubic like grains. X-ray diffractogram confirms chalcopyrite and wurtzite phase of CuInS2. Absorption peaks are blue shifted which is due to decrease in particle size. EDAX shows that synthesized film is non-stoichiometric and confirms the doping of Ho. It is found that initially transmittance is low in UV region but increases in visible region. Higher transmittance of 90% is obtained between 540-620nm. Thus this film can be used in solar cells. Reflectance is low in the synthesized film showing that the film is anti reflection substance. The Ho doped film possesses larger band gap of 2.2 eV as compare to bulk film of CuInS2 which is due to reduced particle size. Refractive index and extinction coefficient calculated in this film are 1.79 and 0.03 respectively. Ho doped CuInS2 film is quite good photosensitive material. A strong emission peak is obtained at a wavelength of 630 nm in the IR region. The photoconductive gain calculated for the sample is ~2.6×104,which is quite good.