References
[1]. Ahamed, H., & Senthilkumar, V. (2011). Consolidation behavior of mechanically alloyed aluminum based nanocomposites reinforced with nanoscale Y2O3 /Al2O3 particles. Materials Characterization, 62(12), 1235-1249.
[2]. Altinkok, N., Özsert, I., & Findik, F. (2013). Dry sliding wear behavior of Al2O3 /SiC particle reinforced aluminium based MMCs fabricated by stir casting method. Acta Physica Polonica, A., 124(1), 11-19.
[3]. Baradeswaran, A., & Perumal, A. E. (2013). Influence of B4C on the tribological and mechanical properties of Al 4 7075–B4C composites. Composites Part B: Engineering, 54, 146-152.
[4]. Bhushan, R. K., Kumar, S., & Das, S. (2013). Fabrication and characterization of 7075 Al alloy reinforced with SiC particulates. The International Journal of Advanced Manufacturing Technology, 65(5-8), 611-624.
[5]. Ezatpour, H. R., Sajjadi, S. A., Sabzevar, M. H., & Huang, Y. (2014). Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting. Materials and Design, 55, 921- 928.
[6]. Harichandran, R., & Selvakumar, N. (2016). Effect of nano/micro B4C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Archives of Civil and Mechanical Engineering, 16(1), 147- 158.
[7]. Kumar, G. V., Rao, C. S. P., Selvaraj, N., & Bhagyashekar, M. S. (2010). Studies on Al6061-SiC and Al7075-Al2O3 metal matrix composites. Journal of Minerals and Materials Characterization and Engineering, 9(01), 43.-55.
[8]. Prabu, S. B., Karunamoorthy, L., Kathiresan, S., & Mohan, B. (2006). Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. Journal of Materials Processing Technology, 171(2), 268-273.
[9]. Rajmohan, T., Palanikumar, K., & Ranganathan, S. (2013). Evaluation of mechanical and wear properties of hybrid aluminium matrix composites. Transactions of Nonferrous Metals Society of China, 23(9), 2509-2517.
[10]. Ramnath, B. V., Elanchezhian, C., Jaivignesh, M., Rajesh, S., Parswajinan, C., & Ghias, A. S. A. (2014). Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Materials and Design, 58, 332-338.
[11]. Rao, S. R., & Padmanabhan, G. (2012). Fabrication and mechanical properties of aluminium-boron carbide composites. International Journal of Materials and Biomaterials Applications, 2(3), 15-18.
[12]. Ravichandran, M., & Dineshkumar, S. (2014). Synthesis of Al-TiO2 composites through liquid powder metallurgy route. International Journal of Mechanical Engineering, 1(1), 12-15.
[13]. Ravindran, P., Manisekar, K., Kumar, S. V., & Rathika, P. (2013). Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Materials & Design, 51, 448- 456.
[14]. Senthilkumar, T. S., & Venkatesh, S. A., & Kumar, R., & Kumar, S. (2016). Evaluation of mechanical properties of Al-6082 based hybrid metal. Journal of Chemical and Pharmaceutical Research, 8(1S), 58-64.
[15]. Sharma, P., Khanduja, D., & Sharma, S. (2016). Dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology. Journal of Materials Research and Technology, 5(1), 29-36.
[16]. Shorowordi, K. M., Laoui, T., Haseeb, A. S. M. A., Celis, J. P., & Froyen, L. (2003). Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: A comparative study. Journal of Materials Processing Technology, 142(3), 738-743.
[17]. Uthayakumar, M., Aravindan, S., & Rajkumar, K. (2013). Wear performance of Al–SiC–B4C hybrid composites under dry sliding conditions. Materials and Design, 47, 456-464.
[18]. Varol, T., Canakci, A., & Ozsahin, S. (2013). Artificial neural network modeling to effect of reinforcement properties on the physical and mechanical properties of Al2024–B4C composites produced by powder metallurgy. Composites Part B: Engineering, 54, 224-233.