-1 to 4000 cm-1.Absorption bands observed at higher frequencies suggest the existence of significant modes of vibrations. The existence of absorption bands at frequency about 1627 cm-1, 2923 cm-1, and 3437 cm-1 are attributed to vibrational modes of triatomic water molecule. The absorption bands, observed at 414 cm-1 and 590 cm-1, confirm the formation of the spinel structure.Employing these materials, the sensing elements, were developed on cylindrical glass as substrate. Carbon dioxide (CO2) gas sensitive electrical properties of the compositions were investigated. The results are attributed to the chemisorption of oxygen species at specific operating temperature. Existence of nano crystallites favors surface phenomenon of adsorption. The materials show n-type conductivity at ambience and depict increase in the resistance due to presence of oxidizing gas. The electrical resistance of sensing elements (RCO2) was measured for variable concentration of CO2 gas from 0% to 15%. The RCO2 increases with increase in CO2. The sensitivities of the compositions under investigation are also estimated and the result of investigation is discussed here.
">The polycrystalline NiZn ferrite have been synthesized by co-precipitation method and characterized by X-ray powder diffraction and FTIR spectroscopy. The FTIR spectra is obtained in the range from 400 cm-1 to 4000 cm-1.Absorption bands observed at higher frequencies suggest the existence of significant modes of vibrations. The existence of absorption bands at frequency about 1627 cm-1, 2923 cm-1, and 3437 cm-1 are attributed to vibrational modes of triatomic water molecule. The absorption bands, observed at 414 cm-1 and 590 cm-1, confirm the formation of the spinel structure.Employing these materials, the sensing elements, were developed on cylindrical glass as substrate. Carbon dioxide (CO2) gas sensitive electrical properties of the compositions were investigated. The results are attributed to the chemisorption of oxygen species at specific operating temperature. Existence of nano crystallites favors surface phenomenon of adsorption. The materials show n-type conductivity at ambience and depict increase in the resistance due to presence of oxidizing gas. The electrical resistance of sensing elements (RCO2) was measured for variable concentration of CO2 gas from 0% to 15%. The RCO2 increases with increase in CO2. The sensitivities of the compositions under investigation are also estimated and the result of investigation is discussed here.