References
[1]. Ang, K. K., Guan, C., Chua, K. S. G., Ang, B. T., Kuah, C., Wang, C., & Zhang, H. (2010, August). Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, (pp.5549-5552).
[2]. Bogue, R. (2010). Brain-computer interfaces: Control by thought. Industrial Robot: An International Journal, 37(2), 126-132.
[3]. Boyer, D., Schroeder, D., & Stern, J. (1994). Blink rate: a possible measure of fatigue. Human Factors: The Journal of the Human Factors and Ergonomics Society, 36(2), 285-297.
[4]. Castelli, F., Glaser, D. E., & Butterworth, B. (2006). Discrete and analogue quantity processing in the parietal lobe: A functional MRI study. Proceedings of the National Academy of Sciences, 103(12), 4693-4698.
[5]. Donnerer, M., & Steed, A. (2010). Using a P300 brain–computer interface in an immersive virtual environment. Presence: Teleoperators and Virtual Environments, 19(1), 12-24.
[6]. Donoghue, J. P. (2002). Connecting cortex to machines: Recent advances in brain interfaces. Nature Neuroscience, 5, 1085.
[7]. Dornhege, G., Millan, J. D. R., Hinterberger, T., McFarland, D. J., & Müller, K. R. (Eds.). (2007). Toward Brain- Computer Interfacing. MIT Press.
[8]. Gevins, A., & Smith, M. E. (1999). Detecting transient cognitive impairment with EEG pattern recognition methods. Aviation, Space, and Environmental Medicine, 70(10), 1018-1024.
[9]. Gundel, A., & Wilson, G. F. (1992). Topographical changes in the ongoing EEG related to the difficulty of mental tasks. Brain Topography, 5(1), 17-25.
[10]. Lee, J. H., Ryu, J., Jolesz, F. A., Cho, Z. H., & Yoo, S. S. (2009). Brain–machine interface via real-time fMRI: Preliminary study on thought-controlled robotic arm. Neuroscience Letters, 450(1), 1-6.
[11]. McFarland, D. J., & Wolpaw, J. R. (2008). Brain-computer interface operation of robotic and prosthetic devices. Computer, 41(10).
[12]. McFarland, D. J., & Wolpaw, J. R. (2011a). Brain-computer interfaces for communication and control. Communications of the ACM, 54(5), 60-66.
[13]. McFarland, D. J., Sarnacki, W. A., Townsend, G., Vaughan, T., & Wolpaw, J. R. (2011b). The P300-based Brain–Computer Interface (BCI): Effects of stimulus rate. Clinical Neurophysiology, 122(4), 731-737.
[14]. NeuroSky (2009a). NeuroSky's Sense™ meters and detection of mental state. Wuxi: Neurosky, Inc. Retrieved on 13th October, 2016 from http://www.neurosky.com/ Documents/Document.pdf?DocumentID=809fde40- 0fa6-4ab6-b7ad-2ec27027e4eb
[15]. NeuroSky (2009b). Brain Wave Signal (EEG) of NeuroSky. Wuxi: Inc, 2009. Retrieved on 13th October, 2016 from http://www.neurosky.com/Documents/Document. pdf?DocumentID=77eee738-c25c-4d63-b278-1035cfa1de92
[16]. Nijboer, F., Clausen, J., Allison, B. Z., & Haselager, P. (2012). The asilomar survey: Stakeholders' opinions on ethical issues related to brain-computer interfacing. Neuroethics, 6(3), 541-578.
[17]. Popescu, F., Fazli, S., Badower, Y., Blankertz, B., & Müller, K. R. (2007). Single trial classification of motor imagination using 6 dry EEG electrodes. PloS One, 2(7), e637.
[18]. Rumsey, F. (2001). Spatial Audio. Music Technology Series. Ed: Focal Press Oxford.
[19]. Savelainen, A. (2010). An introduction to EEG artifacts. Independent Research Projects in Applied Mathematics.
[20]. Silva, F. L. D. (2004). Functional localization of brain sources using EEG and/or MEG data: Volume conductor and source models. Magnetic Resonance Imaging, 22(10), 1533-1538.
[21]. Singer, E. (2008). Brain games. Technology Review, 111(4), 82-84.
[22]. Vidal, J. J. (1973). Toward direct brain-computer communication. Annual Review of Biophysics and Bioengineering, 2(1), 157-180.
[23]. Wolpaw, J. R. (2007). Brain–computer interfaces as new brain output pathways. The Journal of Physiology, 579(3), 613-619.