Heat pipes are relatively recent tiny device to transfer the heat with high effective thermal conductivity. They are extensively used in various applications to extract the heat and control the temperature of various electronics components. It has many advantages such as least operating and maintenance cost, accuracy, extended service life and environmentally safe. As per the global demand, size and weight of the electronics components/devices reduces day by day, which leads to the performance enhancement of heat pipes. Application of nanofluids is one of the relatively recent passive techniques for enhancing the rate of heat transfer in various heat exchanging devices. Different types of nanofluids as heat transfer medium have been employed by many investigators in various types of heat pipes. The performance of heat pipe depends on the number of parameters related to type of working liquid and operating conditions. Recently published investigations have been comprehensively reviewed and presented in the paper. Based on the study, future requirements also have been identified and presented. On the basis of review, it appears to inspect the effect of different parameters (like size, concentration, and filling ratio, angle of inclination and heat load) of nonreported nanofluids to enhance the rate of heat transfer in non-studied heat pipe. It is also found that the combination of experimental results with various techniques of simulation is the recent trend in heat pipe.