Semiconducting - Carbon Nanotube Field Effect Transistor Based Logic Gates

V. Saravanan*, Kannan .V**
* Research Scholar, Sathyabama University, Chennai, India.
** Professor, Sathyabama University, Chennai, India.
Periodicity:June - August'2011
DOI : https://doi.org/10.26634/jele.1.4.1512

Abstract

Carbon Nanotube Field Effect Transistors (CNTFET) are  new  nano-scaled devices for the digital circuits. In MOSFET based digital circuits when the channel length is much smaller than a micrometre is a challenge, and creates the problems in device fabrication, which limits advancing the integrated circuit. Small size of the MOSFET, below a few tens of nanometres creates the low Trans-conductance, gate oxide leakage, low ON-current, Mobility degradation and increased delay. Problems observed in the MOSFET, when size is reduced are avoided in CNTFET, since in case of CNTFET, carbon nanotube is used as channel and high-k material is used as gate dielectric. In this paper, we present the simulation results of semi-conducting Carbon Nanotube Field Effect Transistors based logic gates using HSPICE.

Keywords

CNTFET, MOSFET, High-K Material.

How to Cite this Article?

V. Saravanan and V. Kannan (2011). Semiconducting - Carbon Nanotube Field Effect Transistor Based Logic Gates. i-manager’s Journal on Electronics Engineering, 1(4), 56-60. https://doi.org/10.26634/jele.1.4.1512

References

[1]. Nathan Myhrvold (2006)."Moore's Law Corollary: Pixel Powe” (7 June)
[2]. M. Horowitz, E. Alon, & D. Patil, “Scaling, Power, and the Future of CMOS,” IEDM
[3]. J. Appenzeller & D. J. Frank, (2004). “Frequency dependent characterization of transport properties in carbon nanotube transistors,” Appl. Phys. Lett., Vol. 84, No. 10, pp. 1771–1773, Mar.
[4]. K. Alam & R. Lake, (2005). “Performance of 2 nm gate length carbon nanotube field-effect transistors with source/drain underlaps,” Appl. Phys. Lett., Vol. 87, No. 7, p. 073104, Aug.
[5]. J. Guo, S. Hasan, A. Javey, G. Bosman, & M. Lundstrom, (2005). “Assessment of high- frequency performance potential for carbon nanotube transistors,” IEEE Trans Nanotechnol., Vol. 4, No. 6, pp. 715–721, Nov.
[6]. L. C. Castro, D. L. John, D. L. Pulfrey, M. Pourfath, A. Gehring, & H. Kosina, (2005). “Method for predicting fT for Carbon Nanotube FETs,” IEEE Trans Nanotechnol. ,Vol. 4, no. 6, pp. 699–704, Nov.
[7]. S. Hasan, S. Salahuddin, M. Vaidyanathan, & M. A. Alam, (2006). “High-frequency performance projections for ballistic carbon-nanotube transistors,” IEEE Trans. Nanotech., Vol. 5, pp. 14–22, Jan.
[8]. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, & H. J. Dai, (2004). “High-field quasiballistic transport in short carbon nanotubes,” Phys. Rev. Lett., Vol. 92, No. 10, p. 106804, Mar.
[9]. J. Guo, (2005). “A quantum-mechanical treatment of phonon scattering in carbon nanotube transistors,” J. Appl. Phys., Vol. 98, No. 6, p. 063519, Sep.
[10]. S. Koswatta, S. Hasan, M. Lundstrom, M. P. Anantram, & D. E. Nikonov, Ballisticity of Nanotube FETs: Role of Phonon Energy and Gate Bias, 2005. [Online]. Available: http://arxiv.org/cond- mat/0511723
[11]. G. D. Mahan, (2003). “Electron-optical phonon interaction in carbon nanotubes,” Phys. Rev. B, vol. 68, no.12, p. 125409, Sep.
[12]. R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, & W. Hoenlein, (2005). “Sub-20 nm short channel carbon nanotube transistors,” Nano Lett., Vol. 5, No. 1, pp. 147–150, Nov.
[13]. A. Lochtefeld & D. A. Antoniadis, (2001). “On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit?,” IEEE Trans Electron Device Lett., Vol. 22, No. 2, pp. 95–97, Feb.
[14]. A. Rahman, J. Guo, S. Datta, & M. Lundstrom, (2003). “Theory of ballistic nanotransistors,” IEEE Trans. Electron Devices, Vol. 50, pp. 1853–1864, Sep.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.