References
[1]. Abdou, A. A. N., Khamsi, M. A., & Khan, A. R. (2014). Convergence of Ishikawa iterates of two mappings in modular function spaces. Fixed Point Theory and Applications, 2014(74), 1-10.
[2]. Chugh, R., Kumar, V., & Kumar, S. (2012). Strong convergence of a new three step iterative scheme in Banach spaces. American Journal of Computational Mathematics, 2(4), 345-357.
[3]. Dehaish, B. A. B., & Kozlowski, W. M. (2012). Fixed point iteration processes for asymptotic pointwise nonexpansive mapping in modular function spaces. Fixed Point Theory and Applications, 2012(118), 1-23.
[4]. Dhompongsa, S., Domínguez Benavides, T., Kaewcharoen, A., & Panyanak, B. (2006). Fixed point theorems for multivalued mappings in modular function spaces. Scientiae Mathematicae Japonicae, e-2006, 139-147.
[5]. Ishikawa, S. (1974). Fixed points by a new iteration method. Proceedings of the American Mathematical Society, 44(1), 147-150.
[6]. Kassu, W. W., Sangago, M.G., & Zegeye, H. (2016). Approximating the common fixed point of two multivalued mappings by Ishikawa iterates in modular function spaces. Int. J. Nonlinear Anal. Appl. (submitted).
[7]. Khamsi, M.A., & Kozlowski W.M. (2011). On asymptotic pointwise nonexpansive mappings in modular function spaces. Journal of Mathematical Analysis and Applications, 380(2), 697-708.
[8]. Khamsi, M.A., Kozlowski, W.M., & Reich, S. (1990). Fixed point theory in modular function spaces. Nonlinear Analysis, 14(11), 935-953.
[9]. Khan, S.H., & Abbas, M. (2014). Approximating the fixed points of multivalued ρ-nonexpansive mappings in modular function spaces. Fixed Point Theory Applications, 2014(34).
[10]. Kozlowski, W. M. (1988). Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics, (vol. 122). Marcel Dekka, New York, USA.
[11]. Kutib, M.A., & Latif A. (2009). Fixed points of multivalued mappings in modular function spaces. Fixed Point Theory Applications, 2009, 1-12.
[12]. Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society (Vol. 44, pp., 506-510).
[13]. Musielak, J., & Orlicz, W. (1959). On modular spaces. Studia Mathematica, 18(1), 49-65.
[14]. Markin, J. T. (1968). A fixed point theorem for set valued mappings. Bulletin of the American Mathematical Society, 74(4), 639-640.
[15]. Nadler, S. B. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488.
[16]. Nakano, H. (1950). Modulared Semi-Ordered Linear Spaces. Maruzen Co.