p be nonempty ρ-bounded and convex set. Let T1, T2, T3: C →Pρ(C) be three multivalued mappings such that PT1ρ, PT2ρ and PT3ρ are ρ-nonexpansive mappings with F = Fρ(T1) ⋂ Fρ(T2) ⋂ Fρ(T3) ≠ φ. Suppose T1 , T2 and T3 satisfy condition (I). Then the sequence {fn} defined by us converges to a point of F.

">

Common Fixed Point Theorems for Cr-Iteration Scheme in Three Multivalued Mappings

Apurva Kumar Das*, Shailesh Dhar Diwan**, Swati Jain***
* Lecturer, Department of Mathematics, Government Polytechnic College Sukma, Chhattisgarh, India.
** Associate Professor and Head, Department of Mathematics, Government Engineering College, Raipur, Chhattisgarh, India.
*** Assistant Professor and Head, Department of Computer Science, Government J. Yoganandam Chhattisgarh College, Raipur, Chhattisgarh, India.
Periodicity:July - September'2018
DOI : https://doi.org/10.26634/jmat.7.3.15064

Abstract

The purpose of this paper is to introduce multivalued version of CR iteration process given by Chugh, Kumar, and Kumar (2012) and provecommon fixed point theorem for this iteration in three multivalued ρ-nonexpansive mappings in modular space. Let ρϵη satisfy (UUC1) and C ⊂ Lbe nonempty ρ-bounded and convex set. Let T1, T2, T3: C →Pρ(C) be three multivalued mappings such that PT1ρ, PT2ρ and PT3ρ are ρ-nonexpansive mappings with F = Fρ(T1) ⋂ Fρ(T2) ⋂ Fρ(T3) ≠ φ. Suppose T1 , T2 and T3 satisfy condition (I). Then the sequence {fn} defined by us converges to a point of F.

Keywords

CR Iteration, Multivalued r- Nonexpansive Mapping, Common Fixed Point, Modular Function Space.

How to Cite this Article?

Das, A. K., Diwan, S. D., & Jain, S. (2018). Common Fixed Point Theorems for Cr-Iteration Scheme in Three Multivalued Mappings, i-manager's Journal on Mathematics, 7(3), 51-60. https://doi.org/10.26634/jmat.7.3.15064

References

[1]. Abdou, A. A. N., Khamsi, M. A., & Khan, A. R. (2014). Convergence of Ishikawa iterates of two mappings in modular function spaces. Fixed Point Theory and Applications, 2014(74), 1-10.
[2]. Chugh, R., Kumar, V., & Kumar, S. (2012). Strong convergence of a new three step iterative scheme in Banach spaces. American Journal of Computational Mathematics, 2(4), 345-357.
[3]. Dehaish, B. A. B., & Kozlowski, W. M. (2012). Fixed point iteration processes for asymptotic pointwise nonexpansive mapping in modular function spaces. Fixed Point Theory and Applications, 2012(118), 1-23.
[4]. Dhompongsa, S., Domínguez Benavides, T., Kaewcharoen, A., & Panyanak, B. (2006). Fixed point theorems for multivalued mappings in modular function spaces. Scientiae Mathematicae Japonicae, e-2006, 139-147.
[5]. Ishikawa, S. (1974). Fixed points by a new iteration method. Proceedings of the American Mathematical Society, 44(1), 147-150.
[6]. Kassu, W. W., Sangago, M.G., & Zegeye, H. (2016). Approximating the common fixed point of two multivalued mappings by Ishikawa iterates in modular function spaces. Int. J. Nonlinear Anal. Appl. (submitted).
[7]. Khamsi, M.A., & Kozlowski W.M. (2011). On asymptotic pointwise nonexpansive mappings in modular function spaces. Journal of Mathematical Analysis and Applications, 380(2), 697-708.
[8]. Khamsi, M.A., Kozlowski, W.M., & Reich, S. (1990). Fixed point theory in modular function spaces. Nonlinear Analysis, 14(11), 935-953.
[9]. Khan, S.H., & Abbas, M. (2014). Approximating the fixed points of multivalued ρ-nonexpansive mappings in modular function spaces. Fixed Point Theory Applications, 2014(34).
[10]. Kozlowski, W. M. (1988). Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics, (vol. 122). Marcel Dekka, New York, USA.
[11]. Kutib, M.A., & Latif A. (2009). Fixed points of multivalued mappings in modular function spaces. Fixed Point Theory Applications, 2009, 1-12.
[12]. Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society (Vol. 44, pp., 506-510).
[13]. Musielak, J., & Orlicz, W. (1959). On modular spaces. Studia Mathematica, 18(1), 49-65.
[14]. Markin, J. T. (1968). A fixed point theorem for set valued mappings. Bulletin of the American Mathematical Society, 74(4), 639-640.
[15]. Nadler, S. B. (1969). Multi-valued contraction mappings. Pacific Journal of Mathematics, 30(2), 475-488.
[16]. Nakano, H. (1950). Modulared Semi-Ordered Linear Spaces. Maruzen Co.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.