References
[1]. Amoda, N., Jadhav, B., & Naikwadi, S. (2014). Detection and classification of plant diseases by image processing. International Journal of Innovative Science, Engineering and Technology, 1(2), 70-74.
[2]. Barbedo, J. G. A. (2016). A novel algorithm for semi-automatic segmentation of plant leaf disease symptoms using digital image processing. Tropical Plant Pathology, 41(4), 210-224.
[3]. Bhargavi, K., & Jyothi, S. (2014). A survey on threshold-based segmentation technique in image processing. International Journal of Innovative Research and Development, 3(12), 234-239.
[4]. Chaudhary, P., Chaudhari, A. K., Cheeran, A. N., & Godara, S. (2012). Color transform-based approach for disease spot detection on plant leaf. International Journal of Computer Science and Telecommunications, 3(6), 65-70.
[5]. Dhaygude, S. B., & Kumbhar, N. P. (2013). Agricultural plant leaf disease detection using image processing. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2(1), 599- 602.
[6]. FAO. (2000). Report of the expert consultation on viticulture in Asia and the Pacific. RAP Publication: 2000/13. Retrieved from: http://www.fao.org/3/a-x6903e. pdf
[7]. Haralick, R. M., Shanmugam, K., Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6), 610-621. doi: 10.1109/TSMC.1973.4309314
[8]. Image Processing Toolbox™ 7 User's Guide. (2013). In TechyLib. Retrieved from https://www.techylib. com/en/view/pancakesnightmute/image_processing_toolbox_users_guide_mathworks
[9]. Krithika, N., & Selvarani, A. G. (2017, March). An individual grape leaf disease identification using leaf skeletons and KNN classification. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1-5). IEEE.
[10]. Kulkarni, A. H., & Patil, A. (2012). Applying image processing technique to detect plant diseases. International Journal of Modern Engineering Research, 2(5), 3661-3664.
[11]. Larese, M. G., Namías, R., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M. (2014). Automatic classification of legumes using leaf vein image features. Pattern Recognition, 47(1), 158-168.
[12]. Naikwadi, S., & Amoda, N. (2013). Advances in image processing for detection of plant diseases. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 2(11), 168-175.
[13]. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
[14]. Padol, P. B., & Yadav, A. A. (2016, June). SVM classifier based grape leaf disease detection. In 2016 Conference on Advances in Signal Processing (CASP) (pp. 175-179). IEEE.
[15]. Prakash, R. M., Saraswathy, G. P., Ramalakshmi, G., Mangaleswari, K. H., & Kaviya, T. (2017, March). Detection of leaf diseases and classification using digital image processing. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1-4). IEEE.
[16]. Stergiou, C., & Siganos, D. (n.d.). Neural Networks. Retrieved from https://www.doc.ic.ac.uk/~nd/surprise _96/journal/vol4/cs11/report.html
[17]. Suman, T., & Dhruvakumar, T. (2015). Classification of paddy leaf diseases using shape and color features. IJEEE, 7(01), 239-250.