References
[1]. Alam, H., & Ramakrishna, S. (2013). A review on the enhancement of figure of merit from bulk to nanothermoelectric materials. Nano Eenergy, 2(2), 190-212.
[2]. Anwar, S., Mishra, B. K., & Anwar, S. (2016). Thermoelectric performance of Bi2Te3, Sb2Te3 thin film. Adv. Mater. Proc. 1, 191-194.
[3]. Bulman, G., Barletta, P., Lewis, J., Baldasaro, N., Manno, M., Bar-Cohen, A., & Yang, B. (2016). Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 7, 10302.
[4]. Cai, Z. K., Fan, P., Zheng, Z. H., Liu, P. J., Chen, T. B., Cai, X. M., ... & Zhang, D. P. (2013). Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film. Applied Surface Science, 280, 225-228.
[5]. Caywood Jr, L. P., & Miller, G. R. (1970). Anistropy of the Constant-Energy Surfaces in n-Type Bi2Te3 and Bi2Te3 from Galvanomagnetic Coefficients. Physical Review B, 2(8), 3209.
[6]. Chen, Z. G., Han, G., Yang, L., Cheng, L., & Zou, J. (2012). Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International, 22(6), 535-549.
[7]. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., ... & Venkatasubramanian, R. (2009). On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 4(4), 235.
[8]. Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., & Hng, H. H. (2010). p-type Bi(0.4) Sb(1.6)T3e(3) nanocomposites with enhanced figure of merit. Applied Physics Letters, 96(18), 182104.
[9]. Goldsmid, H. (2014). Bismuth telluride and its alloys as materials for thermoelectric generation. Materials, 7(4), 2577-2592.
[10]. Goldsmid, H. J., Sheard, A. R., & Wright, D. A. (1958). The performance of bismuth telluride thermojunctions. British Journal of Applied Physics, 9(9), 365.
[11]. Gonçalves, L. M., Couto, C., Alpuim, P., Rowe, D. M., & Correia, J. H. (2006). Thermoelectric properties of Bi2Te3 /Sb2Te3 thin films. In Materials Science Forum (Vol. 514, pp. 156-160). Trans Tech Publications.
[12]. Hansen, A. L., Dankwort, T., Winkler, M., Ditto, J., Johnson, D. C., Koenig, J. D., ... & Bensch, W. (2014). Synthesis and thermal instability of high-quality Bi2Te3 /Sb2Te3 superlattice thin film thermoelectrics. Chemistry of Materials, 26(22), 6518-6522.
[13]. Hatsuta, N., Takemori, D., & Takashiri, M. (2016). Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films. Journal of Alloys and Compounds, 685, 147-152.
[14]. Hicks, L. D., & Dresselhaus, M. S. (1993). Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 47(19), 12727.
[15]. Li, S., Soliman, H. M., Zhou, J., Toprak, M. S., Muhammed, M., Platzek, D., ... & Müller, E. (2008). Effects of annealing and doping on nanostructured bismuth telluride thick films. Chemistry of Materials, 20(13), 4403- 4410.
[16]. Lin, J. M., Chen, Y. C., & Lin, C. P. (2013). Annealing effect on the thermoelectric properties of Bi 2 Te 3 thin films prepared by thermal evaporation method. Journal of Nanomaterials, 2013(2), 1-6.
[17]. Lin, J. M., Chen, Y. C., Yang, C. F., & Chen, W. (2015). Effect of substrate temperature on the thermoelectric properties of the Sb2Te3 thin films deposition by using thermal evaporation method. Journal of Nanomaterials, 2015, 1-6.
[18]. Neeli, G., Behara, D. K., & Kumar, M. K. (2016). State of the art review on thermoelectric materials. International Journal of Science and Research, 5, 1833- 1844.
[19]. Paul, D. (2014). Thermoelectric energy harvesting. In ICT-energy-concepts towards zero-power information and communication technology. IntechOpen. Retrived from https://www.intechopen.com/books/ict-energyc oncepts-towards-zero-power-information-and- communication-technology/thermoelectric-energyharvesting
[20]. Peranio, N., Eibl, O., & Nurnus, J. (2006). Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. Journal of Applied Physics, 100(11), 114306.
[21]. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., & Chen, X. (2008). High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320(5876), 634-638.
[22]. Pradyumnan, P. & Swathikrishnan. (2010). Thermoelectric properties of Bi2Te3 and Sb2Te3 and its Bilayer Thin Films. Indian Journal of Pure & Applied Physics, 48(2), 115-120.
[23]. Qader, M. A. E. (2011). Structural, electrical and thermoelectric properties of chromium silicate thin films. UNLV Theses, Dissertations, Professional Papers, and Capstones. 1222. University of Nevada, Las Vegas.
[24]. Ren, S. (1994). Introduction to thermoelectric effects and their applications in energy and environment. [Power Point Presentation]. Retrieved from https://www.slideserve.com/yori/ introduction-to- thermoelectric-effects-and-their- applications-in-energyand- environment
[25]. Rostek, R., Sklyarenko, V., & Woias, P. (2011). Influences of Annealing on thermoelectric properties of Bi2Te3. Advances in Thermoelectric Materials, 26, 1785.
[26]. Saleemi, M., Toprak, M. S., Li, S., Johnsson, M., & Muhammed, M. (2012). Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). Journal of Materials Chemistry, 22(2), 725-730.
[27]. Shakouri, A. (2005). Thermoelectric, thermionic and thermophotovoltaic energy conversion. In ICT 2005. 24th International Conference on Thermoelectrics (pp. 507- 512). IEEE.
[28]. Sharma, Y. C., & Purohit, A. (2016). Tellurium based thermoelectric materials: New directions and prospects. Journal of Integrated Science and Technology, 4(1), 29- 32.
[29]. Svechnikova, T. E., Nikhezina, I. Y., & Polikarpova, N. V. (2000). Properties of Bi2Te3 single crystals doped with Sn. Inorganic Materials, 36(8), 765-767.
[30]. Takashiri, M., Shirakawa, T., Miyazaki, K., & Tsukamoto, H. (2007). Fabrication and characterization of bismuth–telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sensors and Actuators A: Physical, 138(2), 329-334.
[31]. Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., & El-Masry, N. (1997). MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. Journal of Crystal Growth, 170(1-4), 817-821.
[32]. Venkatasubramanian, R., Siivola, E., Colpitts, T., & O'quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597.
[33]. Wang, X., He, H., Wang, N., & Miao, L. (2013). Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Applied Surface Science, 276, 539-542.
[34]. Winkler, M., Liu, X., Schürmann, U., König, J. D., Kienle, L., Bensch, W., & Böttner, H. (2012). Current status in fabrication, structural and transport property characterization, and theoretical understanding of Bi2Te3 /Sb2Te3 superlattice systems. Zeitschrift für anorganische und allgemeine Chemie, Special Issue: Chalcogenides and Chalcogenidometalates: From Basic Research to Fundamental Applications, may be included in the reference, 638(15), 2441-2454.
[35]. Xie, W., He, J., Kang, H. J., Tang, X., Zhu, S., Laver, M., ... & Tritt, T. M. (2010). Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi2Te3) Sb2Te3 nanocomposites. Nano letters, 10(9), 3283-3289.
[36]. Xie, W., Tang, X., Yan, Y., Zhang, Q., & Tritt, T. M. (2009). Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 94(10), 102111.
[37]. Yamashita, O., & Tomiyoshi, S. (2003). Thermoelectric properties of doped p & n-type bismuth telluride thin films. Japanese Journal of Applied Physics, 42(2A), 492-500.
[38]. Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., ... & Ren, Z. F. (2010). Experimental studies on anisotropic thermoelectric properties and structures of ntype Bi2Te2.7Se0.3. Nano Letters, 10(9), 3373-3378.