2Te3 and Sb2Te3 compounds and by doping with Se in these compounds may increase the value of ZT. So, finally it can be concluded that present experimental work explores the improved thermoelectric properties of these materials with many future aspects & applications.

">

A Review on Recent Enhancement in Thermoelectric Properties in Telluride Compounds

M. Kumari*, Y. C. Sharma**
*Research scholar, Department of Physics, Vivekananda Global University, Jaipur, Rajasthan, India.
**Dean, Research & Development and Professor of Physics, Vivekananda Global University, Jaipur, Rajasthan, India.
Periodicity:April - June'2019
DOI : https://doi.org/10.26634/jms.7.1.15042

Abstract

Global Warming and energy crisis are the major problems of today's world. So, the uses of thermoelectric devices are very demanding. The materials used in thermoelectric devices to generate electricity from waste heat emitted by vehicles, industries are known as thermoelectric materials. But unfortunately a small part of waste heat is used for the generation of electricity and rest part is lost as waste heat due to low efficient TE devices. So, it's a challenging task for researchers to develop new thermoelectric materials with high efficiency. On review basis telluride based alloys are known to be best thermoelectric materials. Efficiency of TE devices depends on a dimensionless quantity termed as Figure of merit (ZT) of a material which indicates the ability of producing electricity from waste heat. Greater is the value of ZT indicates highly efficient device and larger the production of electricity. So, present work uses the strategies to enhance the efficiency of thermoelectric materials by fabricating super lattice structures of Bi2Te3 and Sb2Te3 compounds and by doping with Se in these compounds may increase the value of ZT. So, finally it can be concluded that present experimental work explores the improved thermoelectric properties of these materials with many future aspects & applications.

Keywords

Superlattices, Bismuth Telluride, Antimony Telluride, Figure of Merit (ZT), Thermoelectric (TE) Devices

How to Cite this Article?

Kumari, M., and Sharma, Y.C. (2019). A Review on Recent Enhancement in Thermoelectric Properties in Telluride Compounds. i-manager’s Journal on Material Science , 7(1), 12-20. https://doi.org/10.26634/jms.7.1.15042

References

[1]. Alam, H., & Ramakrishna, S. (2013). A review on the enhancement of figure of merit from bulk to nanothermoelectric materials. Nano Eenergy, 2(2), 190-212.
[2]. Anwar, S., Mishra, B. K., & Anwar, S. (2016). Thermoelectric performance of Bi2Te3, Sb2Te3 thin film. Adv. Mater. Proc. 1, 191-194.
[3]. Bulman, G., Barletta, P., Lewis, J., Baldasaro, N., Manno, M., Bar-Cohen, A., & Yang, B. (2016). Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 7, 10302.
[4]. Cai, Z. K., Fan, P., Zheng, Z. H., Liu, P. J., Chen, T. B., Cai, X. M., ... & Zhang, D. P. (2013). Thermoelectric properties and micro-structure characteristics of annealed N-type bismuth telluride thin film. Applied Surface Science, 280, 225-228.
[5]. Caywood Jr, L. P., & Miller, G. R. (1970). Anistropy of the Constant-Energy Surfaces in n-Type Bi2Te3 and Bi2Te3 from Galvanomagnetic Coefficients. Physical Review B, 2(8), 3209.
[6]. Chen, Z. G., Han, G., Yang, L., Cheng, L., & Zou, J. (2012). Nanostructured thermoelectric materials: Current research and future challenge. Progress in Natural Science: Materials International, 22(6), 535-549.
[7]. Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., ... & Venkatasubramanian, R. (2009). On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 4(4), 235.
[8]. Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., & Hng, H. H. (2010). p-type Bi(0.4) Sb(1.6)T3e(3) nanocomposites with enhanced figure of merit. Applied Physics Letters, 96(18), 182104.
[9]. Goldsmid, H. (2014). Bismuth telluride and its alloys as materials for thermoelectric generation. Materials, 7(4), 2577-2592.
[10]. Goldsmid, H. J., Sheard, A. R., & Wright, D. A. (1958). The performance of bismuth telluride thermojunctions. British Journal of Applied Physics, 9(9), 365.
[11]. Gonçalves, L. M., Couto, C., Alpuim, P., Rowe, D. M., & Correia, J. H. (2006). Thermoelectric properties of Bi2Te3 /Sb2Te3 thin films. In Materials Science Forum (Vol. 514, pp. 156-160). Trans Tech Publications.
[12]. Hansen, A. L., Dankwort, T., Winkler, M., Ditto, J., Johnson, D. C., Koenig, J. D., ... & Bensch, W. (2014). Synthesis and thermal instability of high-quality Bi2Te3 /Sb2Te3 superlattice thin film thermoelectrics. Chemistry of Materials, 26(22), 6518-6522.
[13]. Hatsuta, N., Takemori, D., & Takashiri, M. (2016). Effect of thermal annealing on the structural and thermoelectric properties of electrodeposited antimony telluride thin films. Journal of Alloys and Compounds, 685, 147-152.
[14]. Hicks, L. D., & Dresselhaus, M. S. (1993). Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 47(19), 12727.
[15]. Li, S., Soliman, H. M., Zhou, J., Toprak, M. S., Muhammed, M., Platzek, D., ... & Müller, E. (2008). Effects of annealing and doping on nanostructured bismuth telluride thick films. Chemistry of Materials, 20(13), 4403- 4410.
[16]. Lin, J. M., Chen, Y. C., & Lin, C. P. (2013). Annealing effect on the thermoelectric properties of Bi 2 Te 3 thin films prepared by thermal evaporation method. Journal of Nanomaterials, 2013(2), 1-6.
[17]. Lin, J. M., Chen, Y. C., Yang, C. F., & Chen, W. (2015). Effect of substrate temperature on the thermoelectric properties of the Sb2Te3 thin films deposition by using thermal evaporation method. Journal of Nanomaterials, 2015, 1-6.
[18]. Neeli, G., Behara, D. K., & Kumar, M. K. (2016). State of the art review on thermoelectric materials. International Journal of Science and Research, 5, 1833- 1844.
[19]. Paul, D. (2014). Thermoelectric energy harvesting. In ICT-energy-concepts towards zero-power information and communication technology. IntechOpen. Retrived from https://www.intechopen.com/books/ict-energyc oncepts-towards-zero-power-information-and- communication-technology/thermoelectric-energyharvesting
[20]. Peranio, N., Eibl, O., & Nurnus, J. (2006). Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices. Journal of Applied Physics, 100(11), 114306.
[21]. Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., & Chen, X. (2008). High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320(5876), 634-638.
[22]. Pradyumnan, P. & Swathikrishnan. (2010). Thermoelectric properties of Bi2Te3 and Sb2Te3 and its Bilayer Thin Films. Indian Journal of Pure & Applied Physics, 48(2), 115-120.
[23]. Qader, M. A. E. (2011). Structural, electrical and thermoelectric properties of chromium silicate thin films. UNLV Theses, Dissertations, Professional Papers, and Capstones. 1222. University of Nevada, Las Vegas.
[24]. Ren, S. (1994). Introduction to thermoelectric effects and their applications in energy and environment. [Power Point Presentation]. Retrieved from https://www.slideserve.com/yori/ introduction-to- thermoelectric-effects-and-their- applications-in-energyand- environment
[25]. Rostek, R., Sklyarenko, V., & Woias, P. (2011). Influences of Annealing on thermoelectric properties of Bi2Te3. Advances in Thermoelectric Materials, 26, 1785.
[26]. Saleemi, M., Toprak, M. S., Li, S., Johnsson, M., & Muhammed, M. (2012). Synthesis, processing, and thermoelectric properties of bulk nanostructured bismuth telluride (Bi2Te3). Journal of Materials Chemistry, 22(2), 725-730.
[27]. Shakouri, A. (2005). Thermoelectric, thermionic and thermophotovoltaic energy conversion. In ICT 2005. 24th International Conference on Thermoelectrics (pp. 507- 512). IEEE.
[28]. Sharma, Y. C., & Purohit, A. (2016). Tellurium based thermoelectric materials: New directions and prospects. Journal of Integrated Science and Technology, 4(1), 29- 32.
[29]. Svechnikova, T. E., Nikhezina, I. Y., & Polikarpova, N. V. (2000). Properties of Bi2Te3 single crystals doped with Sn. Inorganic Materials, 36(8), 765-767.
[30]. Takashiri, M., Shirakawa, T., Miyazaki, K., & Tsukamoto, H. (2007). Fabrication and characterization of bismuth–telluride-based alloy thin film thermoelectric generators by flash evaporation method. Sensors and Actuators A: Physical, 138(2), 329-334.
[31]. Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., & El-Masry, N. (1997). MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. Journal of Crystal Growth, 170(1-4), 817-821.
[32]. Venkatasubramanian, R., Siivola, E., Colpitts, T., & O'quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597.
[33]. Wang, X., He, H., Wang, N., & Miao, L. (2013). Effects of annealing temperature on thermoelectric properties of Bi2Te3 films prepared by co-sputtering. Applied Surface Science, 276, 539-542.
[34]. Winkler, M., Liu, X., Schürmann, U., König, J. D., Kienle, L., Bensch, W., & Böttner, H. (2012). Current status in fabrication, structural and transport property characterization, and theoretical understanding of Bi2Te3 /Sb2Te3 superlattice systems. Zeitschrift für anorganische und allgemeine Chemie, Special Issue: Chalcogenides and Chalcogenidometalates: From Basic Research to Fundamental Applications, may be included in the reference, 638(15), 2441-2454.
[35]. Xie, W., He, J., Kang, H. J., Tang, X., Zhu, S., Laver, M., ... & Tritt, T. M. (2010). Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi2Te3) Sb2Te3 nanocomposites. Nano letters, 10(9), 3283-3289.
[36]. Xie, W., Tang, X., Yan, Y., Zhang, Q., & Tritt, T. M. (2009). Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Applied Physics Letters, 94(10), 102111.
[37]. Yamashita, O., & Tomiyoshi, S. (2003). Thermoelectric properties of doped p & n-type bismuth telluride thin films. Japanese Journal of Applied Physics, 42(2A), 492-500.
[38]. Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., ... & Ren, Z. F. (2010). Experimental studies on anisotropic thermoelectric properties and structures of ntype Bi2Te2.7Se0.3. Nano Letters, 10(9), 3373-3378.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.