References
[1]. M. Vetterli & J. Kovacevic, (1995). Wavelets and
Subband Coding, SignalProcessing, Prentice Hall,
Englewood, Cliff. NJ.
[2]. D. Taubman, (2000). “High performance scalable
image compression with EBCOT”, IEEE Trans. On Image
Processing, Vol.9, No.7, pp.1158-1170, Jul.
[3]. A. Said & W.A. Plearlman, (1996). “a new, fast, and
efficient image codec based on Set Partitioning In
Hierarchical Trees,” IEEE Trans. On Circuits and Systems for
Video Technology, Vol.6, No.3, pp.243-250, Jun.
[4]. M. Antonini, M. Barlaud, P. Mathieu, & I. Daubechies,
(1992). “Image coading using the wavelet transform,”
IEEE Tran. On Image Processing, Vo.1, No.2, ,pp.205-220,
Apr.
[5]. J.D. Villasenor, B. Belzer, & J. Liao, (1995). “wavelet
filter evaluation for image compression,” IEEE Tran. On
Image Processing, Vol.4, No.8, pp.1053-1060, Aug.
[6]. M. Boliek, (2000). “JPEG 2000 Final Committee Draft,
http://www.jpeg.org/public/fcd15444-1.pdf,”
[7]. I. Daubechies & W. Sweldens, (1996). “Factoring
Wavelet Transforms into Lifting Steps,: Tech.Rep.Bell
Laboratories, Lucent Technologies.
[8]. C.T. Haung, P.C. Tseng, & L.G. Chen, (2004). “Flipping Structure: an efficient VLSI architecture for liftingbased
discrete wavelet transform,” IEEE Tran. On Signal
Processing, Vol.52, No.4, pp.1080-1089, Apr.
[9]. K.A. Kotteri, A.E. Bell, ad J.e. Carletta, (2004). “Design
of multiplierless, high-performance, wavelet filter banks
with image compression applications,” IEEE Tran. On
Circuits and Systems-I, Vol.51, No.3, pp.483-494, Mar.
[10]. G. Strang & T.Q.Nguyen, (1996). Wavelets and Filter
Banks, Wellesley, Wellesley-Combridge, MA.
[11]. Sweldens, W (1995). The lifting scheme: A new
philosophy in biorthogonal wavelet construction on proc.
of SPIEE, Vo.2569, Sar Diego, USA, July, 68-79.
[12]. Calgerbank, A.R., Daubechies, I., Sweledens, W.;
Yeo, B.L, (1998). Wavelet Transform that maps integers to
integers. Applied Computational and harmonic analysis,
Vol.5, No.3, 332-369.
[13]. Strutz, T. Muller, E. (1996). Wavelet filter design for
image compression. IEEE-SP Int. Symposium on Time-
Frequency and Time-scale analysis, Paris, 18-21 June,
273-276.
[14]. Cohen, A., Daubechies, I., Feauveau, J.-C. (1992).
Biorthogonal Bases of compactly supported Wavelets.
Comm. On Pure and Applied Mathematics, Vol.45, 485-
560.