References
[1]. Adjouadi, M., Ayala, M., Cabrerizo, M., Zong, N., Lizarraga, G., & Rossman, M. (2010). Classification of leukemia blood samples using neural networks. Annals of Biomedical Engineering, 38(4), 1473-1482.
[2]. Agaian, S., Madhukar, M., & Chronopoulos, A. T. (2014). Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Systems Journal, 8(3), 995-1004.
[3]. Fraison, J. B., Mekinian, A., Grignano, E., Kahn, J. E., Arlet, J. B., Decaux, O., & Aouba, A. (2016). Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leukemia Research, 43, 13- 17.
[4]. Kadono, M., Kanai, A., Nagamachi, A., Shinriki, S., Kawata, J., Iwato, K., & Nagase, R. (2016). Biological implications of somatic DDX41 p. R525H mutation in acute myeloid leukemia. Experimental Hematology, 44(8), 745-754.
[5]. Kumar, R., Srivastava, R., & Srivastava, S. (2015). Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. Journal of Medical Engineering, 2015.
[6]. Manojbhai, D. D., & Rajamenakshi, R. (2016). Large scale image feature extraction from medical image analysis. International Journal of Advance Engineering and Research (IJAERS), 3(1), 62-66.
[7]. Patil, P. R., Sable, G. S., & Anandgaonkar, G. (2014). Counting of WBCs and RBCs from blood images using gray thresholding. International Journal of Research in Engineering and Technology, 3(4), 391-395.
[8]. Pradipkumar, K. K., & Rajamenakshi, R. (2016). Segmentation of large scale medical images using HPC: Classification of methods and challenges. International Journal of Advance Engineering and Research (IJAERS), 3(1), 56-61.
[9]. Putzu, L., Caocci, G., & Ruberto, C. D. (2014). Leucocyte classification for leukaemia detection using image processing techniques. Artificial Intelligence in Medicine, 62(3), 179-191.
[10]. Raje, C., & Rangole, J. (2014, April). Detection of Leukemia in microscopic images using image processing. In Communications and Signal Processing (ICCSP), 2014 International Conference on (pp. 255- 259). IEEE.
[11]. Ravikumar, S. (2016). Image segmentation and classification of white blood cells with the extreme learning machine and the fast relevance vector machine. Artificial Cells, Nanomedicine, and Biotechnology, 44(3), 985-989.
[12]. Rawat, J., Singh, A., Bhadauria, H. S., & Kumar, I. (2014, December). Comparative analysis of segmentation algorithms for leukocyte extraction in the acute Lymphoblastic Leukemia images. In Parallel, Distributed and Grid Computing (PDGC), 2014 International Conference on (pp. 245-250). IEEE.
[13]. Rawat, J., Singh, A., Bhadauria, H. S., & Virmani, J. (2015). Computer aided diagnostic system for detection of leukemia using microscopic images. Procedia Computer Science, 70, 748-756.
[14]. Saritha, M., Prakash, B. B., Sukesh, K., & Shrinivas, B. (2016, March). Detection of blood cancer in microscopic images of human blood samples: A review. In Electrical, Electronics, and Optimization Techniques (ICEEOT), International Conference on (pp. 596-600). IEEE.
[15]. Supardi, N. Z., Mashor, M. Y., Harun, N. H., Bakri, F. A., & Hassan, R. (2012, March). Classification of blasts in acute leukemia blood samples using k-nearest neighbour. In Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on (pp. 461-465). IEEE.
[16]. Wang, S., Du, S., Atangana, A., Liu, A., & Lu, Z. (2018). Application of stationary wavelet entropy in pathological brain detection. Multimedia Tools and Applications, 77(3), 3701-3714.
[17]. Xing, F., & Yang, L. (2016). Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review. IEEE Reviews in Biomedical Engineering, 9, 234-263.