References
[1]. Ali, J. B., Chebel-Morello, B., Saidi, L., Malinowski, S., & Fnaiech, F. (2015). Accurate bearing remaining useful life prediction based on Weibull distribution and Artificial Neural Network. Mechanical Systems and Signal Processing, 56, 150-172.
[2]. Bechhoefer, E., & Kingsley, M. (2009a). A review of time synchronous average algorithms. In Annual Conference of the Prognostics and Health Management Society (Vol. 1, pp. 1-10).
[3]. Bechhoefer, E., & Kingsley, M. (2009b). A review of time synchronous average algorithms. In Annual Conference of the Prognostics and Health Management Society (pp. 24-33).
[4]. Bravo-Imaz, I., Ardakani, H. D., Liu, Z., García-Arribas, A., Arnaiz, A., & Lee, J. (2017). Motor current signature analysis for gearbox condition monitoring under transient speeds using wavelet analysis and dual-level time synchronous averaging. Mechanical Systems and Signal Processing, 94, 73-84.
[5]. Case Western Reserve University Bearing Data Center. Retrieved from https://csegroups.case.edu/bearing datacenter/ home
[6]. Choudhury, A., & Paliwal, D. (2016). Application of frequency B-Spline wavelets for detection of defects in rolling bearings. Procedia Engineering, 144, 289-296.
[7]. Golbaghi, V. K., Shahbazian, M., Moslemi, B., & Rashed, G. (2017). Rolling element bearing condition monitoring based on vibration analysis using statistical parameters of discrete wavelet coefficients and neural networks. International Journal of Automation and Smart Technology, 7(2), 61-69.
[8]. Huo, Z., Zhang, Y., Francq, P., Shu, L., & Huang, J. (2017). Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures. IEEE Access, 5, 19442-19456.
[9]. Jayaswal, P., Wadhwani, A. K., & Mulchandani, K. B. (2008a). Machine fault signature analysis. International Journal of Rotating Machinery, 2008.
[10]. Kumar, H. S., Pai, P. S., Sriram, N. S., & Vijay, G. S. (2013). ANN based evaluation of performance of wavelet transform for condition monitoring of rolling element bearing. Procedia Engineering, 64, 805-814.
[11]. Lebold, M., McClintic, K., Campbell, R., Byington, C., & Maynard, K. (2000, May). Review of vibration analysis methods for gearbox diagnostics and prognostics. In Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology (Vol. 634, p. 16).
[12]. Peyré, G. (2010). The numerical tours of signal processing. Advanced Computational Signal and Image Processing. IEEE Computing in Science and Engineering, 13(4), 94-97.
[13]. Riera-Guasp, M., Antonino-Daviu, J. A., & Capolino, G. A. (2015). Advances in electrical machine, power electronic, and drive condition monitoring and fault detection: State of the art. IEEE Trans. Industrial Electronics, 62(3), 1746-1759.
[14]. Samanta, B., & Al-Balushi, K. R. (2003). Artificial Neural Network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing, 17(2), 317-328.
[15]. Sanz, J., Perera, R., & Huerta, C. (2007). Fault diagnosis of rotating machinery based on autoassociative neural networks and wavelet transforms. Journal of Sound and Vibration, 302(4-5), 981-999.
[16]. Schröder, D., Vorländer, M., & Svensson, P. U. (2010). Open acoustic measurements for validating edge diffraction simulation methods. In Baltic-Nordic Acoustic Meeting.
[17]. Scilab. Retrieved from www.scilab.org
[18]. Sidar, R., Sen, P. K., & Sahu, G. (2015). Review of vibration based fault diagnosis in rolling element bearing and vibration analysis techniques. International Journal of Scientific Research Engineering & Technology, 4(10), 998-1003.
[19]. Tahir, M. M., Khan, A. Q., Iqbal, N., Hussain, A., & Badshah, S. (2017). Enhancing fault classification accuracy of ball bearing using central tendency based time domain features. IEEE Access, 5, 72-83.
[20]. Tandon, N., & Choudhury, A. (1999). A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribology International, 32(8), 469-480.
[21]. Tyagi, S., & Panigrahi, S. K. (2017). A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks. Journal of Applied and Computational Mechanics, 3(1), 80-91.
[22]. Wear Debris Analysis. (n.d.). Physics of Mechanical Engineering.
[23]. Wörner, S. (n.d.). Fast Fourier Transform, Numerical Analysis, First Edition. Swiss Federal Institute of Technology, Zurich.
[24]. Xiao, F., Shi, Y., & Ren, W. (2018). Robustness analysis of asynchronous sampled-data multiagent networks with time-varying delays. IEEE Transactions on Automatic Control, 63(7), 2145-2152.