References
[1]. Alvarez-Gallegos, J. (1994). Nonlinear regulation of a Lorenz system by feedback linearization techniques. Dynamics and Control, 4(3), 277-298.
[2]. Andrievskii, B. R., & Fradkov, A. L. (2003). Control of chaos: Methods and applications. I. Methods. Automation and Remote Control, 64(5), 673-713.
[3]. Chen, L. Q., & Liu, Y. Z. (1999). A modified exact linearization control for chaotic oscillators. Nonlinear Dynamics, 20(4), 309-317.
[4]. Gao, Q., & Ma, J. (2009). Chaos and Hopf bifurcation of a finance system. Nonlinear Dynamics, 58(1-2), 209-216.
[5]. Guckenheimer, J, & Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag.
[6]. Islam, M., Islam, B., & Islam, N. (2013). Rate estimation of identical synchronization by designing controllers. Journal of Mathematics, 2013. doi:10.1155/2013/590462
[7]. Islam, M., Islam, B., & Islam, N. (2014). Chaos control in Shimizu Morioka system by Lie algebraic exact linearization. International Journal of Dynamics and Control, 2(3), 386-394.
[8]. Islam, N., Islam, B., & Mazumdar, H. P. (2011). Generalized chaos synchronization of unidirectionally coupled Shimizu- Morioka dynamical systems. Differential Geometry, 13, 101-106.
[9]. Islam, N., Mazumdar, H. P., & Das, A. (2009). On the stability and control of the Schimizu-Morioka system of dynamical equations. Diff. Geo. Dyn. Sys., 11, 135-143.
[10]. Khan, A., & Shahzad, M. (2008). Control of chaos in the Hamiltonian system of Mimas-Tethys. The Astronomical Journal, 136(5), 2201-2203.
[11]. Liqun, C., & Yanzhu, L. (1998). Control of the Lorenz chaos by the exact linearization. Applied Mathematics and Mechanics, 19(1), 67-73.
[12]. Mondal, A., Islam, N., & Sen, S. (2015). Control of chaos in Sprott system B by state space exact linearization method. International Journal on Mathematics and Computer Science, 1, 11-18.
[13]. Rabinovich, M. I., & Abarbanel, H. D. I. (1998). The role of chaos in neural systems. Neuroscience, 87(1), 5-14.
[14]. Scholl, E., & Schuster, H. G. (1999). Handbook of Chaos Control. Wiley: Weinheim.
[15]. Shahzad, M. (2016a). Chaos control in HIV Infection of CD+4 T-cells system by Lie Algebraic Exact Linearization. i-manager's Journal on Mathematics, 5(1), 20-30. https://doi.org/10.26634/jmat.5.1.4868
[16]. Shahzad, M. (2016b). Chaos control in three dimensional cancer model by state space exact linearization based on lie algebra. Mathematics, 4(2), 33.
[17]. Shinbrot, T., Grebogi, C., Yorke, J. A., & Ott, E. (1993). Using small perturbations to control chaos. Nature, 363(6428), 411-474.
[18]. Steingrube, S., Timme, M., Wörgötter, F., & Manoonpong, P. (2010). Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Physics, 6(3), 224-230.
[19]. Tsagas, G. R., & Mazumdar, H. P. (2000). On the control of a dynamical system by a linearization method via Lie Algebra. Rev. Bull. Cal. Math. Soc., 8(1), 25-32.
[20]. Vittot, M. (2004). Perturbation theory and control in classical or quantum mechanics by an inversion formula. Journal of Physics A: Mathematical and General, 37(24), 6337-6357.