References
[1]. Abdullah, N. R. H., Musirin, I., Othman, M. M., & Rahman, T. K. A. (2009, February). Solving reactive power control problems in a stressed power system network using evolutionary computation technique. In Proceedings of the 8th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Databases (pp. 254-259). World Scientific and Engineering Academy and Society (WSEAS).
[2]. Asija, D., Astick, P. V., & Choudekar, P. (2018). Minimizing fuel cost of generators using GA-OPF. In Proceedings of First International Conference on Smart System, Innovations and Computing (pp. 331-339). Springer, Singapore.
[3]. Bhambu, P., Sharma, S., & Kumar, S. (2018). Modified Gbest Artificial Bee Colony Algorithm. In Soft Computing: Theories and Applications (pp. 665-677). Springer, Singapore.
[4]. Chansareewittaya, S., & Jirapong, P. (2015). Power transfer capability enhancement with multitype FACTS controllers using hybrid particle swarm optimization. Electrical Engineering, 97(2), 119-127.
[5]. Davis, L. (1991). Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold.
[6]. Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Harley, R. G., & Hernandez, J. C. (2008). Particle swarm optimization: Basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171-195.
[7]. Dinh, L., Vo Ngoc, D., & Vasant, P. (2013). Artificial bee colony algorithm for solving optimal power flow problem. The Scientific World Journal, 2013, 1-9.
[8]. Gao, W. F., Liu, S. Y., & Huang, L. L. (2014). Enhancing artificial bee colony algorithm using more informationbased search equations. Information Sciences, 270, 112- 133.
[9]. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning, 1st Ed. Addison- Wesley Longman Publishing Co., Inc. Boston, MA, USA.
[10]. Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms, Second Edition. Wiley Publishers.
[11]. Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan.
[12]. Kennedy, J., & Eberhart, R. C. (2001). Swarm Intelligence. San Francisco: Morgan Kaufmann.
[13]. Khamees, A., Badra, N., & Abdelaziz, A. (2016). Optimal power flow methods: A comprehensive survey. Int. Electr. Eng. J. (IEEJ), 7(4), 2228-2239.
[14]. Kothari, D. P., & Dhillon, J. S. (2011). Power System Optimization, Second Edition: PHI Publications.
[15]. Lee, K. Y., & El-Sharkawi, M. A. (Eds.). (2008). Modern Heuristic Optimization Techniques: Theor y and Applications to Power Systems (Vol. 39). John Wiley & Sons.
[16]. Li, Z., Wang, W., Yan, Y., & Li, Z. (2015). PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high dimensional optimization problems. Expert Systems with Applications, 42(22), 8881-8895.
[17]. Matos, L., Silva, D., & Soler, E. (2017, August). An analysis of the branch-and-bound method in solving the reactive optimal power flow problem. In Electronics, Electrical Engineering and Computing (INTERCON), 2017 IEEE XXIV International Conference on (pp. 1-4). IEEE.
[18]. Niknam, T., Narimani, M. R., Aghaei, J., & Azizipanah-Abarghooee, R. (2012). Improved particle swarm optimisation for multi-objective optimal power flow considering the cost, loss, emission and voltage stability index. IET Generation, Transmission & Distribution, 6(6), 515-527.
[19]. Pedapenki, K. K., & Swathi, G. (2017). Application of Genetic Algorithm in Electrical Engineering. International Journal of Pure and Applied Mathematics, 114(8), 35-43.
[20]. Ramesh, G., & Kumar, T. K. S. (2015). Optimal dispatch of real power generation using classical methods. International Journal of Electronics and Electrical Engineering, 3(2), 115-120.
[21]. Shuqin, S., Bingren, Z., Jun, W., Nan, Y., & Qingyun, M. (2013, June). Power system reactive power optimization based on adaptive particle swarm optimization algorithm. In Digital Manufacturing and Automation (ICDMA), 2013 Fourth International Conference on (pp. 935-939). IEEE.