References
[1]. Downey, A. B. (2015). Think Python: How to think like a Computer Scientist. Green Tea Press: Needham, Massachusetts.
[2]. Fekade, B., Maksymyuk, T., Kyryk, M., & Jo, M. (2018). Probabilistic recovery of incomplete sensed data in IoT. IEEE Internet of Things Journal, 5(4), 2282-2292.
[3]. Jiang, N., & Gruenwald, L. (2007, April). Estimating missing data in data streams. In International Conference on Database Systems for Advanced Applications (pp. 981-987). Springer, Berlin, Heidelberg.
[4]. Kulakov, A., & Davcev, D. (2005, April). Tracking of unusual events in Wireless Sensor Networks based on Artificial Neural-Networks algorithms. In Null (pp. 534-539). IEEE.
[5]. Kumar, P. S., & Pranavi, S. (2017, December). Performance analysis of Machine Learning algorithms on diabetes dataset using big data analytics. In Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS), 2017 International Conference on (pp. 508-513). IEEE.
[6]. Le Gruenwald, M. H. (2005, January). Estimating missing values in related sensor data streams. In COMAD.
[7]. Li, Y., & Parker, L. E. (2008, September). A spatial-temporal imputation technique for classification with missing data in a wireless sensor network. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on (pp. 3272-3279). IEEE.
[8]. Mnih, A., & Salakhutdinov, R. R. (2008). Probabilistic matrix factorization. In Advances in Neural Information Processing Systems (pp. 1257-1264).
[9]. Srivastava, A. K., Kumar, C., & Mangla, N. (2016). Analysis of Diabetic Dataset and Developing Prediction Model by using Hive and R. Indian Journal of Science and Technology, 9(47).
[10]. Quang, V. T., & Miyoshi, T. (2008, March). Energy Balance on Adaptive Routing Protocol for Wireless Sensor Networks. In 2008 IEICE General Conference (pp. S-36).
[11]. Pigott, T. D. (2001). A Review of Methods for Missing Data, Educational Research and Evaluation, 7(4), 353- 383.
[12]. Williams, D., Liao, X., Xue, Y., & Carin, L. (2005, August). Incomplete-data classification using logistic regression. In Proceedings of the 22nd International Conference on Machine Learning (pp. 972-979). ACM.