References
[1]. Aldar, B. A., Pinjari, R. K., & Burange, N. M. (2014). Electric and dielectric behavior of Ni-Co-Cd ferrite. IOSRJournal of Applied Physics, 6(4), 23-26.
[2]. Ateia, E., Ahmed, M.A., & Ghouniem, R.M. (2014). Electrical properties and initial permeability of Co-Mg ferrites. Solid State Sciences, 31, 1-8.
[3]. Chu, N., Wang, X., Liu, Y., Jin, H., Wu, Q., Li, L., Wang, Z., & Ge, H. (2009). Magnetic properties of low Mn-doped Ni-Cu-Zn nanocrystalline ferrites. Journal of Alloys and Compounds, 470(1-2), 438-442.
[4]. El Ata, A. A., Attia, S. M., & Meaz, T. M. (2004). AC conductivity and dielectric behavior of CoAlxFe2-xO4. Solid State Sciences, 6(1), 61-69.
[5]. Fukuda, Y., Nagata, S., & Echizenya, K. (2004). Electrical conductivity of Mn-Zn ferrite single crystals with a small number of Fe2+ ions. Journal of Magnetism and Magnetic Materials, 279, 325-330.
[6]. Grindlay, J. (1970). An Introduction to the Phenomenological Theor y of Ferroelectricity: International Series of Monographs in: Natural Philosophy (1st Ed.). Elsevier.
[7]. Iwamoto, M. (2012). Maxwell–Wagner Effect. In: Bhushan B. (eds) Encyclopedia of Nanotechnology. Springer, Dordrecht.
[8]. Iwauch, K. (1971). Dielectric properties of fine particles of Fe3O4 and some ferrites. Japanese Journal of Applied Physics, 10(11), 1520-1528.
[9]. Jahan, N., & Zakaria, A. K. M. (2016). Structural and electrical properties of chromium substituted nickel ferrite by conventional ceramic method. Materials Science- Poland, 34(1), 185-191.
[10]. Jankowski, S. (1988). Dielectric dispersion in polycrystalline ferrites: Random network model. Journal of the American Ceramic Society, 71 (4), 176-180.
[11]. Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T., & Tokura, Y. (2003). Magnetic control of ferroelectric polarization, Nature, 426(6962), 55-58.
[12]. Kingery, W. D., Bowen, H. K., & Uhlmann, D. R. (1976). nd Introduction to Ceramics (2nd Ed.). New York: Wiley.
[13]. Kumar, B. K., Srivastava & Prankishan. (1998). Dispersion in electrical properties of titanium substituted lithium ferrites, Proc. of ICF-V (pp 227-231).
[14]. Kumar, G. R., Kumar, K. V., & Venudhar, Y. C. (2012). Electrical conductivity and dielectric properties of copper doped nickel ferrites prepared by double sintering method. International Journal of Modern Engineering Research, 2(2), 177-185.
[15]. Kumar, S., Alimuddin., Kumar, R., Dogra, A., Reddy, V. R., & Banerjee, A. (2006). Mössbauer and magnetic studies of multiferroic Mg0.95 Mn0.05 Fe2-2x Ti2xO4 system.Journal of Applied Physics, 99(8), 08M910.
[16]. Kumar, S., Kumar, R., Thakur, P., Chae, K. H., Angadi, B., & Choi, W. K. (2007a). Electrical transport, magnetic, and electronic structure studies of Mg0.95 Mn0.05 Fe2-2x Ti2xO4+δ (0≤ x≤ 0.5) ferrites. Journal of Physics: Condensed Matter, 19(47), 476210.
[17]. Kumar, S., Kumar, R., Dogra, A., Reddy, V. R., Banerjee, A., & Alimuddin. (2007b). Multiferroic behavior of Ti doped Mg0.95 Mn0.05 Fe2-2xO4 ferrite. Indian Journal of Pure and Applied Physics, 45 (1), 31-36.
[18]. Kumar, S., Prakash, R., Alimuddin, Choi, H. K., Koo, B. H., Song, J. I., Chung, H., Jeong, H., & Lee, C. G. (2010). Influence of Ti4+ doping on hyperfine field parameters of Mg0.95 Mn0.05 Sm2x Fe2-2x Ti2xO4 (0≤x≤0.7). Journal of Central South University Technology, 17, 1139-1143.
[19]. Kumar, S., Sharma, S., Alimuddin, Choudhary, R. J., Lee, C. G., Phase, D. M., Koo, B. H., & Kumar, R. (2009). Structural and Magnetic Properties of Bulk and Thin Films of Mg0.95 Mn0.05 Sm2x Fe2-2xO4. Current Applied Physics, Elsevier, 9(5), 1009-1013.
[20]. Latha, K., Mohan, K. S. & Ravinder, D. (1994). Dielectric behaviour of mixed Mn-Zn ferrites. Physica Status Solidi (A), 142(2), 103-106.
[21]. Mamata, M., Nilima, N., Maisnam, V., & Sumitra, P. (2016). Low dielectric loss in nano-Li-ferrite spinels prepared by sol-gel auto-combustion technique, Bulleten of Material Sciences. Indian Academy of Sciences, 39(1), 249-254.
[22]. Mazen, S. A., Abd-el-Rahiem, A. E., & Sabrah, B, A. (1998). Effect of Mg2+- Fe3+ replacement on physical and electrical properties of the system MgxZn0.3Fe2.7-xO4±δ.Journal of Materials Science, 23(8), 2917-2920.
[23]. Meaza, T. M., Attiab, S. M., Abo, EL., & Ataa, A. M. (2003). Effect of tetravalent titanium Ions sunstitution on the Dielectric properties of Co-Zn ferrite. Journal of Magnetism and Magnetic Materials, 257, 296-305.
[24]. Patil, N. D., Velhal, N. B., Tarwar, N. L., & Vijaya, R. P. (2014). Dielecric and magnetic properties of Co substituted Ni-Cd ferrite prepared by solution combustion method. International Journal of Engineering and Innovative Technology (IJTT), 3(8), 2277-3754.
[25]. Phanjoubam, S., Kottari, D., & Baijal, J. S. (1989). Electrical conductivity of tetravalent titanium substituted Lithium-Zinc Ferrite. Physica Status Solidi (A), 111, 131-135.
[26]. Praveen, G. B., & Rao, A. D. P. (2018). Influence of Sm/Zr on Spectroscopic properties of Mg-Mn Ferrites. i-manager's Journal on Material Science, 6(1), 20-30. https://doi.org/10.26634/jms.6.1.14067
[27]. Praveen, K., & Srinath, S. (2013). The effect of Sb on the electrical and magnetic properties of Ni-Zn ferrites prepared by sol-gel auto combustion method. Journal of Electroceramics, 10832, 9840.
[28]. Raghasudha, M., Ravinder, D., & Veerasomaiah, P. (2013). Characterization of chromium substituted cobalt nano ferries synthesized by Citrate-Gel Auto Combustion method. Advances in Materials Physics and Chemistry, 3, 89-96.
[29]. Ramesh, B. (1997). Dielectric behavior of Mn-Zn Ferrites (Doctoral Dissertation, Andhra University).
[30]. Ramesh, B., Rao, A. D. P., Rao, P. R. M., & Raju, S. B. (1998). Influence of Zr/Ti on Dielectric Behaviour of Mn-Zn Ferrites. Journal of the Magnetics Society of Japan, 22(S_1_ISFA_97), S1_29-31.
[31]. Rao, B. P., Rao, K. H., Trinadh, K., & Caltun, O. F. (2004). Dielectric behaviour of niobium doped Ni-Zn ferrites. Journal of Optoelectronics and Advanced Materials, 6, 951-954.
[32]. Rao, B.V., Narayana, P. V. L., & Rao, A. D. P. (2017). Impact of Mo6+ on resistivity of copper ferrite. Journal of Magneism and Magnetic Materials, 431, 59-61.
[33]. Rao, K. S., Krishna, P. M., Prasad, D. M., & Gangadharudu, D. (2007). Modulus spectroscopy of lead potassium titanium niobate (Pb 0.95 K 0.1 Ti 0.25 Nb 1.8 O 6) ceramics. Journal of Materials Science, 42(13), 4801-4809.
[34]. Ravinder, D. (1992). Dielectric behaviour of Lithium- Cadmium Ferrites. Physica Status Solidi (A), 129(2), 549- 554.
[35]. Ravinder, D., & Reddy, P. V. B. (2003). High-frequency Di- electric behaviour of Li-Mg Ferrites. Materials Letters, 57(26-27), 4344-4350. https://doi.org/10.1016/S0167- 577X(03)00093-4
[36]. Ravinder, D., Murthy, S. R., Mulay, V. N., & Reddy, K. B. (1992). Low-Frequency dielectric behaviour of Lithium–Zinc ferrites. Physica Status Solidi (A), 134(1), 273- 278.
[37]. Safan, S. A., Seoud, A. S., & El-Shater, R. A. (2005). Study of dielectric and impedance properties of Mnferrites. Journal of Physica B, 365, 27-42.
[38]. Samkaria, R., & Sharma, V. (2013). Effect of rare earth yttrium substitution on the structural, dielectric and electrical properties of nanosized nickel aluminate. Materials Science and Engineering: B, 178(20), 1410- 1415.
[39]. Sheena, X., Smitha, T., Binu, P.J., & Mohammed, E.M. (2013). Effect of samarium substitution on the structural and magnetic properties of nano-crystalline cobalt ferrite, Journal of Nanoscience, 10 (1155), 524380.
[40]. Sivakumar, N., Narayanasamy, A., Jeyadevan, B., Joseyphus, R. J., & Venkateswaran, C. (2008). Dielectric relaxation behaviour of nanostructured Mn–Zn ferrite. Journal of Physics D: Applied Physics, 41(24), 245001.
[41]. Venkatesh, N., Sunder, S. G., Kumar, N. H., Aravind, G., Ravinder, D., & Somaiah, P. V. (2015). Characterization of Rare earth material samarium substituted magnesium nano ferrites synthesized by Citrate-Gel Auto combustion method. IOSR Journal of Applied Chemistry, 8(5), 22-27.
[42]. Xiao, H. M., Liu, X. M., & Fu, S. Y. (2006). Synthesis, magnetic and microwave absorbing properties of coreshell structured MnFe2O4/TiO2 nanocomposites. Composites Science and Technology, 66(13), 2003- 2008.
[43]. Yuqiu, O., Haibin, Y., Nan, Y., Yuzun, F. Hongyang, Z., & Guangtian, Z. (2006). Structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles, Materials Letters, 60, 3548-3552.