References
[1]. Bennett, C. H. (1973). Logical reversibility of computation. IBM Journal of Research and Development, 17(6), 525-532.
[2]. Bhagyalakshmi, H. R., & Venkatesha, M. K. (2011). Design of a multifunction BVMF reversible logic gate and its applications. International Journal of Computer Applications, 32(3), 36-41.
[3]. Biswas, P., Gupta, N., & Patidar, N. (2014). Basic reversible logic gates and it's QCA implementation. Int. Journal of Engineering Research and Applications, 4(6), 12-16.
[4]. Dehghan, B. (2013). Survey the inverse property of quantum gates for concurrent error detection. Journal of Basic and Applied Scientific Research, 3(2), 603-608.
[5]. Fredkin, E., & Toffoli, T. (1982). Conservative logic. International Journal of Theoretical Physics, 21(3-4), 219- 253.
[6]. Frost, S. E., Rodrigues, A. F., Janiszewski, A. W., Rausch, R. T., & Kogge, P. M. (2002, February). Memory in motion: A study of storage structures in QCA. In First Workshop on Non-Silicon Computing (Vol. 2).
[7]. Gomathi, V. S., Monisha, G., Sherin, N. S., and Diwibedi, R. K. (2017). Design of Ripple Carry Adder using quantum-Dot Cellular Automata, International Journal of Engineering Development and Research, 5(1), 716-722.
[8]. Graunke, C. R., Wheeler, D. I., Tougaw, D., & Will, J. D. (2005). Implementation of a crossbar network using quantum-dot cellular automata. IEEE Transactions on Nanotechnology, 4(4), 435-440.
[9]. Iyer, S., & McKeown, N. W. (2003). Analysis of the parallel packet switch architecture. IEEE/ACM Transactions on Networking, 11(2), 314-324.
[10]. Kamaraj, A., & Ramya, S. (2014, December). Design of router using reversible logic in quantum cellular automata. In Communication and Network Technologies (ICCNT), 2014 International Conference on (pp. 249-253). IEEE.
[11]. Khan, M. M. A. (2002, December). Design of full-adder with reversible gates. In International Conference on Computer and Information Technology (pp. 515-519).
[12]. Landaurer, R. (1961). Irreversibility and heat generation in the computational process. IBM Journal of Research and Development, 5, 183-191.
[13]. Lent, C. S., & Tougaw, P. D. (1997). A device architecture for computing with quantum dots. Proceedings of the IEEE, 85(4), 541-557.
[14]. Moore, G. E. (2006). Cramming more components onto integrated circuits. IEEE Solid-State Circuits Society Newsletter, 11(3), 33-35.
[15]. Nagamani, A. N., Jayashree, H. V., & Bhagyalakshmi, H. R. (2011). Novel low power comparator design using reversible logic gates. Indian Journal of Computer Science and Engineering (IJCSE), 2(4), 566-574.
[16]. Rangaraju, H. G., Hegde, V., Raja, K. B., & Muralidhara, K. N. (2012). Design of efficient reversible binary comparator. Procedia Engineering, 30, 897-904.
[17]. Sardinha, L. H., Costa, A. M., Neto, O. P. V., Vieira, L. F., & Vieira, M. A. (2013). Nanorouter: A quantum-dot cellular automata design. IEEE Journal on Selected Areas in Communications, 31(12), 825-834.
[18]. Tehrani, M. A., Safaei, F., Moaiyeri, M. H., & Navi, K. (2011). Design and implementation of multistage interconnection networks using quantum-dot cellular automata. Microelectronics Journal, 42(6), 913-922.
[19]. Thapliyal, H., & Ranganathan, N. (2011, August). A new design of the reversible subtractor circuit. In Nanotechnology (IEEE-NANO), 2011 11th IEEE Conference on (pp. 1430-1435). IEEE.
[20]. Toffoli, T. (1980). Reversible Computing. Tech memo MIT. LCS/TM-151, MIT Lab for Computer Science.
[21]. Vedral, V., Barenco, A., & Ekert, A. (1996). Quantum networks for elementary arithmetic operations. Physical Review A, 54(1), 147.