References
[1]. Abdolhosseinzadeh, S., Asgharzadeh, H., & Kim, H. S. (2015). Fast and fully-scalable synthesis of reduced graphene oxide. Scientific Reports, 5, 10160.
[2]. Chen, W., Wang, H., Mao, L., Chen, X., & Shangguan, W. (2014). Influence of loading Pt, RhO2 co-catalysts on photocatalytic overall water splitting over H1.9K0.3La0.5Bi0.1 Ta2O7. Catalysis Communications, 57, 115-118.
[3]. Chen, X., Chen, S., Lin, C., Jiang, Z., & Shangguan, W. (2015a). Nickels/CdS photocatalyst prepared by flowerlike Ni/Ni (OH)2 precursor for efficiently photocatalytic H2 evolution. International Journal of Hydrogen Energy, 40(2), 998-1004.
[4]. Chen, W., Chu, M., Gao, L., Mao, L., Yuan, J., & Shangguan, W. (2015b). Ni(OH)2 loaded on TaON for enhancing photocatalytic water splitting activity under visible light irradiation. Applied Surface Science, 324, 432-437.
[5]. Jaramillo, T. F., Jørgensen, K. P., Bonde, J., Nielsen, J. H., Horch, S., & Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science, 317(5834), 100-102.
[6]. Levi, M. D., & Aurbach, D. (1997). Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium. The Journal of Physical Chemistry B, 101(23), 4630-4640.
[7]. Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3(2), 101-105.
[8]. Li, Y., Wang, H., Xie, L., Liang, Y., Hong, G., & Dai, H. (2011). MoS nanoparticles grown on graphene: An 2 advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 133(19), 7296-7299.
[9]. Lomeda, J. R., Doyle, C. D., Kosynkin, D. V., Hwang, W. F., & Tour, J. M. (2008). Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of the American Chemical Society, 130(48), 16201-16206.
[10]. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., ... & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806-4814.
[11]. Muhich, C. L., Ehrhart, B. D., Al-Shankiti, I., Ward, B. J., Musgrave, C. B., & Weimer, A. W. (2016). A review and perspective of efficient hydrogen generation via solar thermal water splitting. Wiley Interdisciplinary Reviews: Energy and Environment, 5(3), 261-287.
[12]. Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A., & Niu, L. (2010). Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors and Bioelectronics, 25(5), 1070-1074.
[13]. Uhl, F. M., & Wilkie, C. A. (2004). Preparation of nanocomposites from styrene and modified graphite oxides. Polymer Degradation and Stability, 84(2), 215- 226.
[14]. Xu, Y., Bai, H., Lu, G., Li, C., & Shi, G. (2008). Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of the American Chemical Society, 130(18), 5856-5857.
[15]. Yu, J., Hai, Y., & Cheng, B. (2011). Enhanced photocatalytic H2 -production activity of TiO2 by Ni (OH)2 cluster modification. The Journal of Physical Chemistry C, 115(11), 4953-4958.
[16]. Zhang, Q., Li, Z., Wang, S., Li, R., Zhang, X., Liang, Z., ... & Li, C. (2016). Effect of redox cocatalysts location on photocatalytic overall water splitting over cubic NaTaO3 semiconductor crystals exposed with equivalent facets. ACS Catalysis, 6(4), 2182-2191.
[17]. Zhu, X., Liu, Q., Zhu, X., Li, C., Xu, M., & Liang, Y. (2012). Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid. Int. J. Electrochem. Sci., 7, 5172-5184.