References
[1]. Bertsch, J., Carnal, C., Karlson, D., McDaniel, J., & Vu, K. (2005). Wide-area protection and power system utilization. Proceedings of the IEEE, 93(5), 997-1003.
[2]. Chen, M., Wang, H., Shen, S., & He, B. (2017). Research on a distance relay-based wide-area backup protection algorithm for transmission lines. IEEE Transactions on Power Delivery, 32(1), 97-105.
[3]. Eissa, M. M. (2009). New principle for transmission line protection using phase portrait plane. IET Generation, Transmission & Distribution, 3(1), 49-56.
[4]. Eissa, M. M., Masoud, M. E., & Elanwar, M. M. M. (2010). A novel back up wide area protection technique for power transmission grids using phasor measurement unit. IEEE Transactions on Power Delivery, 25(1), 270-278.
[5]. He, Z., Zhang, Z., Chen, W., Malik, O. P., & Yin, X. (2011). Wide-area backup protection algorithm based on fault component voltage distribution. IEEE Transactions on Power Delivery, 26(4), 2752-2760.
[6]. Horowitz, S. H., & Phadke, A. G. (2006). Third zone revisited. IEEE Transactions on Power Delivery, 21(1), 23- 29.
[7]. Jena, M. K., Samantaray, S. R., & Panigrahi, B. K. (2015). A new wide-area backup protection scheme for series-compensated transmission system. IEEE Systems Journal, 11(3), 1877-1887.
[8]. Kundu, P., & Pradhan, A. K. (2015). Online identification of protection element failure using wide area measurements, IET Generation, Transmission & Distribution, 9(2), 115-123.
[9]. Li, Z., Yin, X., Zhang, Z., & He, Z. (2013). Wide-area protection fault identification algorithm based on multiinformation fusion. IEEE Transactions on Power Delivery, 28(3), 1348-1355.
[10]. Ma, J., Li, J., Thorp, J. S., Arana, A. J., Yang, Q., & Phadke, A. G. (2011). A fault steady state componentbased wide area backup protection algorithm. IEEE Transactions on Smart Grid, 2(3), 468-475.
[11]. Ma, J., Liu, C., & Thorp, J. S. (2016). A wide-area backup protection algorithm based on distance protection fitting factor. IEEE Transactions on Power Delivery, 31(5), 2196-2205.
[12]. Muneshwar, S. N., Hasabe, R., Shelar, D., & Kose, P. (2014, March). A new adaptive PMU based protection scheme for interconnected transmission network system. In Circuit, Power and Computing Technologies (ICCPCT), 2014 International Conference on (pp. 197-202). IEEE.
[13]. Nayak, P. K., Pradhan, A. K., & Bajpai, P. (2014). Widearea measurement-based backup protection for power network with series compensation. IEEE Transactions on Power Delivery, 29(4), 1970-1977.
[14]. Neyestanaki, M. K., & Ranjbar, A. M. (2015). An Adaptive PMU-Based Wide Area Backup Protection Scheme for Power Transmission Lines. IEEE Trans. Smart Grid, 6(3), 1550-1559.
[15]. Tan, J. C., Crossley, P. A., Kirschen, D., Goody, J., & Downes, J. A. (2000). An expert system for the back-up protection of a transmission network. IEEE Transactions on Power Delivery, 15(2), 508-514.
[16]. Tan, J. C., Crossley, P. A., McLaren, P. G., Gale, P. F., Hall, I., & Farrell, J. (2002a). Application of a wide area backup protection expert system to prevent cascading outages. IEEE Transactions on Power Delivery, 17(2), 375- 380.
[17]. Tan, J. C., Crossley, P. A., McLaren, P. G., Hall, I., Farrell, J., & Gale, P. (2002b). Sequential tripping strategy for a transmission network back-up protection expert system. IEEE Transactions on Power Delivery, 17(1), 68-74.
[18]. Wang, Y., Yin, X., & You, D. (2010, July). Agent-based wide area protection with high fault tolerance. In Modelling, Identification and Control (ICMIC), The 2010 International Conference on (pp. 739-744). IEEE.
[19]. Xiao, J., Wen, F., Chung, C. Y., & Wong, K. P. (2006). Wide-area protection and its applications a bibliographical survey. IEEE PES Power Systems Conference and Exposition (pp. 1388-1397).
[20]. Yang, Z. L., D. Y. Shi, and X. Z. Duan. (2008). Widearea protection system based on direction comparison principle. Proceedings of the CSEE (Vol. 28, No. 22, pp. 87- 93).
[21]. Zare, J., Aminifar, F., & Sanaye-Pasand, M. (2015). Synchrophasor-based wide-area backup protection scheme with data requirement analysis. IEEE Transactions on Power Delivery, 30(3), 1410-1419.