References
[1]. Alguindigue, I. E., Loskiewicz-Buczak, A., & Uhrig, R. E. (1993). Monitoring and diagnosis of rolling element bearings using Artificial Neural Networks. IEEE Transactions on Industrial Electronics, 40(2), 209-217.
[2]. Amir, P. F. (2008). An adaptive input-output feedback linearization controller for doubly-fed induction machine drives. Serbian Journal of Electrical Engineering, 5(1), 139-154.
[3]. Broomhead, D., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Int. J. Complex System, 2(3), 321-355.
[4]. Chou, B. (1991). Using Neural Neural Networks to detect incipient faults in induction motors. Journal of Neural Network Computing, 12(3).
[5]. Filippetti, F., Franceschini, G., Tassoni, C., & Vas, P. (2000). Recent developments of induction motor drives fault diagnosis using AI techniques. IEEE Transactions on Industrial Electronics, 47(5), 994-1004.
[6]. Khan, M. R., & Khan, M. F. (2015). Effect of resonance on the performance of single phase two winding self excited induction generator. i-manager's Journal on Electrical Engineering, 9(2), 8-15.
[7]. Knight, A. M., & Bertani, S. P. (2005). Mechanical fault detection in a medium-sized induction motor using stator current monitoring. IEEE Transactions on Energy Conversion, 20(4), 753-760.
[8]. Li, B., Chow, M. Y., Tipsuwan, Y., & Hung, J. C. (2000). Neural-network-based motor rolling bearing fault diagnosis. IEEE Transactions on Industrial Electronics, 47(5), 1060-1069.
[9]. Nandi, S., & Toliyat, H. A. (1999). Condition monitoring and diagnosis of electrical machine. In A Review IEEE Ind. Application Society Annual Meeting.
[10]. Patel, R. K., & Giri, B. R. T. C. (2015a). Application of DWT and PDD for bearing fault diagnosis using vibration signal. J. Elect. Eng.,15 (4), 139-144.
[11]. Patel, R. K., & Giri, V. K. (2015b). Fault classification of induction motor bearing using statistical features and Artificial Neural Network. Journal on Electrical Engineering, 9(2),41-48.
[12]. Puhan, P. S., & Behera, S. (2017, December). Application of soft computing methods to detect fault in AC motor. In Advances in Computing, Communication and Control (ICAC3), 2017 International Conference on (pp. 1-5). IEEE.
[13]. Schoen, R. R., Habetler, T. G., Kamran, F., & Bartfield, R. G. (1995). Motor bearing damage detection using stator current monitoring. IEEE Transactions on Industry Applications, 31(6), 1274-1279.
[14]. Tavner, P. J., Gaydon, B. G., & Ward, D. M. (1986, May). Monitoring generators and large motors. In IEE Proceedings B-Electric Power Applications, 133(3), 169- 180.
[15]. Wu, S., & Chow, T. W. (2004). Induction machine fault detection using SOM-based RBF neural networks. IEEE Transactions on Industrial Electronics, 51(1), 183-194.