References
[1]. Bahers, T. L., Labat, F., Pauporté, T., & Ciofini, I. (2010). Effect of solvent and additives on the open-circuit voltage of ZnO-based dye-sensitized solar cells: A combined theoretical and experimental study. Physical Chemistry Chemical Physics, 12(44), 14710-14719.
[2]. Bose, S., Soni, V. & Genwa, K. R. (2015). Recent advances and future prospects for Dye Sensitized Solar Cells: A review. International Journal of Scientific and Research Publications, 5(4), 1-8.
[3]. Chen, R., Yang, X., Tian, H., Wang, X., Hagfeldt, A., & Sun. L. (2007). Effect of Tetrahydroquinoline Dyes structure on the performance of organic Dye-Sensitized Solar Cells. Chemistry of Materials, 19(16), 4007- 4015.
[4]. Cherepy, N.J., Smestad, G. P., Grätzel, M., & Zhang, J. Z. (1997). Ultrafast Electron Injection: Implications for a Photoelectrochemical cell utilizing an Anthocyanin Dye- Sensitized TiO nanocrystalline electrode. The Journal of 2 Physical Chemistry- B, 101(45), 9342-9351.
[5]. Chiba, Y., Islam, A., Kakutani, K., Komiya, R., Koide, N., & Han, L. (2005a). High efficiency of dye-sensitized solar cells. In 15th International Photovoltaic Science and Engineering Conference (665-666). Technical Digest.
[6]. Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., & Han, L. (2005b). Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics Part 2, 45(25), 638-640.
[7]. Choi, H., Lee, J. K., Song, K., Kang, S. O., & Ko, J. (2007). Novel organic dyes containing bis-dimethylfluorenyl amino benzo [b] thiophene for highly efficient dye-sensitized solar cell. Tetrahedron, 63(15), 3115-3121.
[8]. Dai, Q., & Rabani, J. (2002). Unusually efficient photosensitization of nanocrystalline TiO2 films by pomegranate pigments in aqueous medium. New Journal of Chemistry, 26(4), 421-426.
[9]. Fujishima, A., Hayashitani, E., & Honda, K. (1971). Study on spectral sensitization by electrochemical method: Case of titanium oxide single crystal electrode. UTokyo Repository, 23(18), 363-365.
[10]. Gao, F. (2008). Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient Ruthenium Sensitizers for high performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society,130(32),10720-10728.
[11]. Garcia, C. G., Polo, A. S., & Iha, N. Y. M. (2003a). Fruit extracts and ruthenium polypyridinicdyes for sensitization of TiO in photoelectrochemical solar cells. Journal of 2 Photochemistry and Photobiology A: Chemistry, 160(1- 2), 87- 91.
[12]. Garcia, C. G., Polo, A. S., & Iha, N. Y. M. (2003b). Photoelectrochemical solar cell using extract of EugeniajambolanaLam as a natural sensitizer. Annals of the Brazilian Academy of Sciences, 75(2),163-165.
[13]. Grätzel, M. (2005a). Mesoscopic Solar Cells for electricity and hydrogen production from sunlight. Chemistry Letters, 34(1), 8-13.
[14]. Grätzel, M. (2005b). Solar energy conversion by dyesensitized photovoltaic cells. Inorganic Chemistry, 44(20), 6841-6851.
[15]. Han, L., Fukui, A., Fuke, N., Koide, N., & Yamanaka, R. (2006). High efficiency of dye sensitized solar cell and module. In Proceedings of the 4th IEEE World Conference on Photovoltaic Energy Conversion, (179-182).
[16]. Hao, S., Wu, J., Huang, Y., & Lin, J. (2006). Natural Dyes as Photosensitizers for Dye-Sensitized Solar Cell. Solar Energy, 80(2), 209-214.
[17]. Hara, K., Sugihara, H., Tachibana, Y., Islam, A., Yanagida, M., Sayama, K. & Arakawa, H. (2001). Dye-Sensitized Nanocrystalline TiO2 Solar Cells based on Ruthenium (II) Phenanthroline complex Photosensitizers. Langmuir, 17(19), 5992-5999.
[18]. Hinsch, A., Kroon, J. M., Kern, R., Uhlendorf, I., Sastrawan, R., & Meyer, A. (2001). Long-term stability and efficiency of dye-sensitized solar cells. In Proceedings of th the 17th European Photovoltaic Solar Energy Conference, (pp.51-54).
[19]. Honsberg, C., & Bowden. S. (2018). Solar Cell Efficiency. In pveducation.org. Retrieved from https://www.pveducation.org/pvcdrom/solar-celloperation/ solar-cell-efficiency
[20]. Horiuchi, T., Miura, H., Sumioka, K., & Uchida, S. (2004). High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of American Chemical Society, 126(39),12218-12219.
[21]. Ito, S., Miura, H., Uchida, S., Takata, M., Sumioka, K., Liska, P., Comte, P., Pecky, P., & Gratzel, M. (2008). High-conversion- efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 41(0), 5194-5196.
[22]. Kay, A., Baker, R. H., & Grätzel, M. (1994). Artificial Photosynthesis 2- Investigations on the Mechanism of Photosensitization of nanocrystalline TiO2 Solar Cells by Chlorophyll Derivatives. The Journal of Physical Chemistry, 98(3), 952-959.
[23]. Kroon, J. M., Bakker, N. J., & Smit, H. J. P. (2007). Nanocr ystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 15(1), 1-18.
[24]. Kumara, G. R. A., Kaneko, S., Okuya, M.,Onwona- Agyeman. B., Konno, A., & Tennakone, K. (2006). Shiso leaf pigments for dye-sensitized solid-state solar cell. Solar Energy Materials and Solar Cells, 90(9),1220-1226.
[25]. Kushwaha, S., & Bahadur, L.(2011a). Characterization of some metal-free organic dyes as photosensitizer for nanocr ystallineZnO-based dye sensitized solar cells. International Journal of Hydrogen Energy, 36 (18),11620-11627.
[26]. Kushwaha, S., & Bahadur, L. (2011b). Characterization of Synthetic Ni(II)-Xylenol complex as a Photosensitizer for Wide-Band Gap ZnO Semiconductor Electrodes. International Journal of Photoenergy, 980560, 1-9.
[27]. Lee, K. M., Suryanarayanan, V., & Ho, K. C. (2009). Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells. Journal of Power Sources,188(2), 635-641.
[28]. Lenzman, F. O., & Kroon, J. M. (2007). Recent advances in dye sensitized solar cells. Advances in Optoelectronics, 65073, 1-10.
[29]. O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740.
[30]. Polo, A. S., & Iha, N. Y. M. (2006). Blue sensitizers for solar cells: Natural dyes from calafate and jaboticaba. Solar Energy Materials and Solar Cells, 90(13), 1936- 1944.
[31]. Sirimanne, P. M., Senevirathna, M. K. I., Premalal, E. V. A., Pitigala, P. K. D. D. P., Sivakumar, V., & Tennakone, K. (2006). Utilization of natural pigment extracted from pomegranate fruits as sensitizer in solid-state solar cells. Journal of Photochemistry Photobiology A: Chemistry, 177(2-3), 324-327.
[32]. Soni, V., Mahavar, C., & Genwa, K. R. (2017). Effect of solvents on mixture of azur b and sudan black b photosensitizer in fabrication of DSSC. International Journal for Research in Applied Science & Engineering Technology, 5(1), 135-144.
[33]. Tai, W. P., & Inoue, K. (2003). Eosin Y-sensitized nanostructured SnO/TiO solar cells. Materials Letters, 57(9- 10), 1508-1513.
[34]. Tennakone, K., Kumara, G. R. R. A., Kumarasinghe, A. R., Sirimanne, P. M., & Wijayantha, K. G. U. (1996). Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances. Journal of Photochemistry and Photobiology A: Chemistry, 94(2-3), 217-220.
[35]. Zeng, W., Cao, Y., Bai, Y., Wang, Y., Shi, Y., Zhang, M., Wang, F., Pan, C., & Wang, P. (2010). Efficienct dyesensitized solar cells with an organic photosensitizers featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chemistry of Materials, 22(5), 1915-1925.
[36]. Zhang, D., Yamamoto, N., Yoshida, T., & Minoura, H. (2002). Natural dye sensitized solar cells. Transaction of the Materials Research Society Japan, 27(4), 811-814.
[37]. Zhu, H., Zeng, H., Subramanian, V., Masarapu, C., Hung, K. H. & Wei, B. (2008). Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology, 19(46), 1-5.