Review on The Impact of Deposition Conditions on Reactively Deposited CZTSe Thin Films

Rekha Prajapat*, Y. C. Sharma**
* Research Scholar, Department of Physics, Vivekananda Global University, Jaipur, Rajasthan, India.
**Dean, Research & Development and Professor of Physics, Vivekananda Global University, Jaipur, Rajasthan, India.
Periodicity:October - December'2018
DOI : https://doi.org/10.26634/jms.6.3.14831

Abstract

In the second generation thin film solar cell, Copper Zinc Tin Selenium (CZTSe) thin film is considered as the quintessential absorber layer in solar cell as its constituents are earth abundant and non-toxic, making it environmental friendly. Many fabrication methods have been employed to fabricate the films like Thermal evaporation method, pulsed layer deposition, RF-DC Sputtering, etc. The authors have monitored the aspects that highly influence the band gap of CZTSe thin films during the deposition process. This paper recapitulate the parameters that affect the band gap of CZTSe thin film as an absorber layer like substrate temperature, annealing temperature, and order of precursors.

Keywords

Substrate Temperature, Annealing Temperature and Ratio of Precursor.

How to Cite this Article?

Prajapat, R., and Sharma, Y. C. (2018). Review on the Impact of Deposition Conditions on Reactively Deposited CZTSe Thin Films. i-manager’s Journal on Material Science, 6(3), 50-55. https://doi.org/10.26634/jms.6.3.14831

References

[1]. Ahn, S., Jung, S., Gwak, J., Cho, A., Shin, K., Yoon, K., ... & Yun, J. H. (2010). Determination of band gap energy (E ) of Cu2ZnSnSe4 thin films: On the discrepancies of g reported band gap values. Applied Physics Letters, 97(2), 021905.
[2]. Babu, G. S., Kumar, Y. K., Bhaskar, P. U., & Raja, V. S. (2008). Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer. Semiconductor Science and Technology, 23(8), 085023.
[3]. Babu, G. S., Kumar, Y. K., Bhaskar, P. U., & Vanjari, S. R. (2010). Effect of Cu/(Zn+Sn) ratio on the properties of coevaporated Cu ZnSnSe thin films. Solar Energy Materials 2 4 and Solar Cells, 94(2), 221-226.
[4]. Brammertz, G., Buffière, M., Oueslati, S., ElAnzeery, H., Ben Messaoud, K., Sahayaraj, S., ... & Poortmans, J. (2013). Characterization of defects in 9.7% efficient Cu2ZnSnSe4 -CdS-ZnO solar cells. Applied Physics Letters, 103(16), 163904.
[5]. Fairbrother, A., Fontané, X., Izquierdo-Roca, V., Placidi, M., Sylla, D., Espindola-Rodriguez, M., ... & Saucedo, E. (2014). Secondary phase formation in Zn-rich Cu2ZnSnSe4 -based solar cells annealed in low pressure and temperature conditions. Progress in Photovoltaics: Research and Applications, 22(4), 479- 487.
[6]. Han, L., Chen, Z. S., Wan, L., & Xu, J. Z. (2012). Effect of substrate temperature on the preparation of Cu2ZnSnSethin films. In Applied Mechanics and Materials (Vol. 130, pp. 895-899). Trans Tech Publications.
[7]. He, J., Tao, J., Meng, X., Dong, Y., Zhang, K., Sun, L., ... & Chu, J. (2014). Effect of selenization time on the growth of Cu2ZnSnSe4 thin films obtained from rapid thermal processing of stacked metallic layers. Materials Letters, 126, 1-4.
[8]. Hong, S., Kim, C., Park, S. C., Rhee, I., Kim, D. H., & Kang, J. K. (2012). Characteristics of Cu2ZnSnSe4 film formed by using co-sputtered precursors and selenization. Molecular Crystals and Liquid Crystals, 565(1), 147-152.
[9]. Juškenås, R., Kanapeckait, S., Karpavičien, V., Mockus, Z., Pakštas, V., Selskien, A., ... & Niaura, G. (2012). A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells. Solar Energy Materials and Solar Cells, 101, 277- 282.
[10]. Kim, J., Park, S., Ryu, S., Oh, J., & Shin, B. (2017). Improving the open circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Progress in Photovoltaics: Research and Applications, 25(4), 308- 317.
[11]. Kim, K. H., & Amal, I. (2011). Growth of Cu2ZnSnSe4 thin films by selenization of sputtered single-layered Cu- Zn-Sn metallic precursors from a Cu-Zn-Sn alloy target. Electronic Materials Letters, 7(3), 225.
[12]. Klavina, I., Raudoja, J., Altosaar, M., Mellikov, E., Meissner, D. & Kaljuvee, T. (2010). CZTSe (Cu2ZnSnSe4) crystal growth for use in monograin membrane solar cells. In. Conf. of Young Scientists on Energy Issues, CYSENI 2010 (pp. 345-353).
[13]. Kuo, D. H., & Hsu, J. T. (2014). Development of 3.7% efficient Cu2ZnSnSe4 solar cells by selenizing Cu-Zn-Sn films deposited by DC sputtering on TiN-protected Mo/Glass substrates. Journal of Electronic Materials, 43(7), 2694- 2701.
[14]. Lai, F. I., Yang, J. F., Wei, Y. L., & Kuo, S. Y. (2017). High quality sustainable Cu2ZnSnSe4 (CZTSe) absorber layers in highly efficient CZTSe solar cells. Green Chemistry, 19(3), 795-802.
[15]. Li, J. V., Kuciauskas, D., Young, M. R., & Repins, I. L. (2013). Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells. Applied Physics Letters, 102(16), 163905.
[16]. Li, J., Wang, H., Wu, L., Chen, C., Zhou, Z., Liu, F., ... & Zhang, Y. (2016). Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Applied Materials & Interfaces, 8(16), 10283-10292.
[17]. Liu, T. C., & Hu, Y. (2014). Preparation and characterization of CZTSe films through electrochemical deposition route. Int. J. Electrochem. Sci., 9, 2985-2992.
[18]. Luckert, F., Hamilton, D. I., Yakushev, M. V., Beattie, N. S., Zoppi, G., Moynihan, M., ... & Krustok, J. (2011). Optical properties of high quality Cu2ZnSnSe4 thin films. Applied Physics Letters, 99(6), 062104.
[19]. Park, D., Nam, D., Jung, S., An, S., Gwak, J., Yoon, K., ... & Cheong, H. (2011). Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation. Thin Solid Films, 519(21), 7386-7389.
[20]. Redinger, A., Mousel, M., Djemour, R., Gütay, L., Valle, N., & Siebentritt, S. (2014). Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer. Progress in Photovoltaics: Research and Applications, 22(1), 51-57.
[21]. Rey, G., Redinger, A., Sendler, J., Weiss, T. P., Thevenin, M., Guennou, M., ... & Siebentritt, S. (2014). The band gap of Cu2ZnSnSe4: Effect of order-disorder. Applied Physics Letters, 105(11), 112106.
[22]. Salomé, P. M. P., Fernandes, P. A., & Cunha, A. D. (2010). Influence of selenization pressure on the growth of Cu2ZnSnSe4 films from stacked metallic layers. Physica Status Solidic, 7(34), 913-916.
[23]. Shao, L., Zhang, J., Zou, C., & Xie, W. (2012). Cu ZnSnSe Thin Films by Selenization of Simultaneously 2 4 Evaporated Sn-Zn-Cu Metallic Lays for Photovoltaic Applications. Physics Procedia, 32, 640-644.
[24]. Wibowo, R. A., Kim, W. S., Lee, E. S., Munir, B., & Kim, K. H. (2007). Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets. Journal of Physics and Chemistry of Solids, 68(10), 1908-1913.
[25]. Yeranyan, N. (2017). The influence of the precursor's deposition order on the properties of CZTSe thin films. Armenian Journal of Physics, 10(4), 199-205.
[26]. Zoppi, G., Forbes, I., Miles, R. W., Dale, P. J., Scragg, J. J., & Peter, L. M. (2009). Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications, 17(5), 315-319.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.