References
[1]. Ahn, S., Jung, S., Gwak, J., Cho, A., Shin, K., Yoon, K., ... & Yun, J. H. (2010). Determination of band gap energy (E ) of Cu2ZnSnSe4 thin films: On the discrepancies of g reported band gap values. Applied Physics Letters, 97(2), 021905.
[2]. Babu, G. S., Kumar, Y. K., Bhaskar, P. U., & Raja, V. S. (2008). Effect of post-deposition annealing on the growth of Cu2ZnSnSe4 thin films for a solar cell absorber layer. Semiconductor Science and Technology, 23(8), 085023.
[3]. Babu, G. S., Kumar, Y. K., Bhaskar, P. U., & Vanjari, S. R. (2010). Effect of Cu/(Zn+Sn) ratio on the properties of coevaporated Cu ZnSnSe thin films. Solar Energy Materials 2 4 and Solar Cells, 94(2), 221-226.
[4]. Brammertz, G., Buffière, M., Oueslati, S., ElAnzeery, H., Ben Messaoud, K., Sahayaraj, S., ... & Poortmans, J. (2013). Characterization of defects in 9.7% efficient Cu2ZnSnSe4 -CdS-ZnO solar cells. Applied Physics Letters, 103(16), 163904.
[5]. Fairbrother, A., Fontané, X., Izquierdo-Roca, V., Placidi, M., Sylla, D., Espindola-Rodriguez, M., ... & Saucedo, E. (2014). Secondary phase formation in Zn-rich Cu2ZnSnSe4 -based solar cells annealed in low pressure and temperature conditions. Progress in Photovoltaics: Research and Applications, 22(4), 479- 487.
[6]. Han, L., Chen, Z. S., Wan, L., & Xu, J. Z. (2012). Effect of substrate temperature on the preparation of Cu2ZnSnSe4 thin films. In Applied Mechanics and Materials (Vol. 130, pp. 895-899). Trans Tech Publications.
[7]. He, J., Tao, J., Meng, X., Dong, Y., Zhang, K., Sun, L., ... & Chu, J. (2014). Effect of selenization time on the growth of Cu2ZnSnSe4 thin films obtained from rapid thermal processing of stacked metallic layers. Materials Letters, 126, 1-4.
[8]. Hong, S., Kim, C., Park, S. C., Rhee, I., Kim, D. H., & Kang, J. K. (2012). Characteristics of Cu2ZnSnSe4 film formed by using co-sputtered precursors and selenization. Molecular Crystals and Liquid Crystals, 565(1), 147-152.
[9]. Juškenås, R., Kanapeckait, S., Karpavičien, V., Mockus, Z., Pakštas, V., Selskien, A., ... & Niaura, G. (2012). A two-step approach for electrochemical deposition of Cu–Zn–Sn and Se precursors for CZTSe solar cells. Solar Energy Materials and Solar Cells, 101, 277- 282.
[10]. Kim, J., Park, S., Ryu, S., Oh, J., & Shin, B. (2017). Improving the open circuit voltage of Cu2ZnSnSe4 thin film solar cells via interface passivation. Progress in Photovoltaics: Research and Applications, 25(4), 308- 317.
[11]. Kim, K. H., & Amal, I. (2011). Growth of Cu2ZnSnSe4 thin films by selenization of sputtered single-layered Cu- Zn-Sn metallic precursors from a Cu-Zn-Sn alloy target. Electronic Materials Letters, 7(3), 225.
[12]. Klavina, I., Raudoja, J., Altosaar, M., Mellikov, E., Meissner, D. & Kaljuvee, T. (2010). CZTSe (Cu2ZnSnSe4) crystal growth for use in monograin membrane solar cells. In. Conf. of Young Scientists on Energy Issues, CYSENI 2010 (pp. 345-353).
[13]. Kuo, D. H., & Hsu, J. T. (2014). Development of 3.7% efficient Cu2ZnSnSe4 solar cells by selenizing Cu-Zn-Sn films deposited by DC sputtering on TiN-protected Mo/Glass substrates. Journal of Electronic Materials, 43(7), 2694- 2701.
[14]. Lai, F. I., Yang, J. F., Wei, Y. L., & Kuo, S. Y. (2017). High quality sustainable Cu2ZnSnSe4 (CZTSe) absorber layers in highly efficient CZTSe solar cells. Green Chemistry, 19(3), 795-802.
[15]. Li, J. V., Kuciauskas, D., Young, M. R., & Repins, I. L. (2013). Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells. Applied Physics Letters, 102(16), 163905.
[16]. Li, J., Wang, H., Wu, L., Chen, C., Zhou, Z., Liu, F., ... & Zhang, Y. (2016). Growth of Cu2ZnSnSe4 film under controllable Se vapor composition and impact of low Cu content on solar cell efficiency. ACS Applied Materials & Interfaces, 8(16), 10283-10292.
[17]. Liu, T. C., & Hu, Y. (2014). Preparation and characterization of CZTSe films through electrochemical deposition route. Int. J. Electrochem. Sci., 9, 2985-2992.
[18]. Luckert, F., Hamilton, D. I., Yakushev, M. V., Beattie, N. S., Zoppi, G., Moynihan, M., ... & Krustok, J. (2011). Optical properties of high quality Cu2ZnSnSe4 thin films. Applied Physics Letters, 99(6), 062104.
[19]. Park, D., Nam, D., Jung, S., An, S., Gwak, J., Yoon, K., ... & Cheong, H. (2011). Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation. Thin Solid Films, 519(21), 7386-7389.
[20]. Redinger, A., Mousel, M., Djemour, R., Gütay, L., Valle, N., & Siebentritt, S. (2014). Cu2ZnSnSe4 thin film solar cells produced via co-evaporation and annealing including a SnSe2 capping layer. Progress in Photovoltaics: Research and Applications, 22(1), 51-57.
[21]. Rey, G., Redinger, A., Sendler, J., Weiss, T. P., Thevenin, M., Guennou, M., ... & Siebentritt, S. (2014). The band gap of Cu2ZnSnSe4: Effect of order-disorder. Applied Physics Letters, 105(11), 112106.
[22]. Salomé, P. M. P., Fernandes, P. A., & Cunha, A. D. (2010). Influence of selenization pressure on the growth of Cu2ZnSnSe4 films from stacked metallic layers. Physica Status Solidic, 7(34), 913-916.
[23]. Shao, L., Zhang, J., Zou, C., & Xie, W. (2012). Cu ZnSnSe Thin Films by Selenization of Simultaneously 2 4 Evaporated Sn-Zn-Cu Metallic Lays for Photovoltaic Applications. Physics Procedia, 32, 640-644.
[24]. Wibowo, R. A., Kim, W. S., Lee, E. S., Munir, B., & Kim, K. H. (2007). Single step preparation of quaternary Cu2ZnSnSe4 thin films by RF magnetron sputtering from binary chalcogenide targets. Journal of Physics and Chemistry of Solids, 68(10), 1908-1913.
[25]. Yeranyan, N. (2017). The influence of the precursor's deposition order on the properties of CZTSe thin films. Armenian Journal of Physics, 10(4), 199-205.
[26]. Zoppi, G., Forbes, I., Miles, R. W., Dale, P. J., Scragg, J. J., & Peter, L. M. (2009). Cu2ZnSnSe4 thin film solar cells produced by selenisation of magnetron sputtered precursors. Progress in Photovoltaics: Research and Applications, 17(5), 315-319.