References
[1]. Al-Yaseen, W. L., Othman, Z. A., & Nazri, M. Z. A. (2016). Real-time intrusion detection system using multi-agent system. IAENG International Journal of Computer Science, 43(1), 80-90.
[2]. Al-Hamami, A. H., & Hashem, S. H. (2006). A proposed multi-agent system for intrusion detection system in a complex network. In Information and Communication Technologies, 2006. ICTTA'06. 2nd (Vol. 2, pp. 3552-3556). IEEE.
[3]. Ganapathy, S., Kulothungan, K., Muthurajkumar, S., Vijayalakshmi, M., Yogesh, P., & Kannan, A. (2013). Intelligent feature selection and classification techniques for intrusion detection in networks: A survey. EURASIP Journal on Wireless Communications and Networking, 2013(1), 271.
[4]. Gorodetski, V., Kotenko, I., & Karsaev, O. (2003). Multi-agent technologies for computer network security: Attack simulation, intrusion detection and intrusion detection learning. Comput. Syst. Sci. Eng., 18(4), 191-200.
[5]. Kailashiya, D., & Jain, R.C. (2012). Improve Intrusion Detection using Decision Tree with sampling. Int. J. Computer Technology & Applications, 3(4), 1209-1216.
[6]. Khorram, T., & Baykan, N.A. (2018). Feature selection in network intrusion detection using metaheuristic algorithms. International Journal of Advance Research, Ideas and Innovations in Technology, 4(4), 704-710.
[7]. Kohavi, R., Brodley, C. E., Frasca, B., Mason, L., & Zheng, Z. (2000). KDD-Cup 2000 organizers' report: Peeling the onion. ACM SIGKDD Explorations Newsletter, 2(2), 86-93.
[8]. Labiod, H., Boudaoud, K., & Labetoulle, J. (2000). Towards a new approach for intrusion detection with intelligent agents. Networking and Information Systems Journal, 2(5/6), 701-740.
[9]. Latha, S., & Prakash, S. J. (2018). HPFSM- A High Pertinent Feature Selection Mechanism for Intrusion Detection System. International Journal of Pure and Applied Mathematics, 118(9), 77-83.
[10]. Levin, I. (2000). KDD-99 classifier learning contest: LLSoft's results overview. SIGKDD Explorations, 1(2), 67-75.
[11]. Mojumder, N., Shahabub, M., Afsana, M., Mehedi, M., & Shabanam S. (2017). A cluster-based hybrid framework for Network Intrusion Detection. International Journal of Computer Applications, 172(1), 23-29.
[12]. Mokarian, A., Faraahi, A., & Delavar, A. G. (2013). False positives reduction techniques in intrusion detection systems- A review. International Journal of Computer Science and Network Security (IJCSNS), 13(10), 128-134.
[13]. Najeeb, R.F., & Dhannoon, B. N. (2018). A feature selection approach using Binary Firefly Algorithm For Network Intrusion Detection System. ARPN Journal of Engineering and Applied Sciences, 13(6), 2347-2352.
[14]. Peddabachigari, S., Abraham, A., & Thomas, J. (2004). Intrusion detection systems using decision trees and support vector machines. International Journal of Applied Science and Computations, 11(3), 118-134.
[15]. Sabri, F. N. M., Norwawi, N. M., & Seman, K. (2011). Identifying false alarm rates for intrusion detection system with data mining. IJCSNS International Journal of Computer Science and Network Security, 11(4), 95-99.
[16]. Sasan, H. P. S., & Sharma, M. (2016). Intrusion detection using feature selection and machine learning algorithm with misuse detection. International Journal of Computer Science & Information Technology (IJCSIT), 8(1),17-25.
[17]. Suthaharan, S., & Vinnakota, K. (2011, July). An approach for automatic selection of relevance features in intrusion detection systems. In Proc. of the 2011 International Conference on Security and Management (SAM'11) (pp. 215-219).
[18]. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009, July). A detailed analysis of the KDD CUP 99 data set. In Computational Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium on (pp.1-6). IEEE.