References
[1]. Asghari, S. A. A., Sarband, A. S., & Habibnia, M. (2017). Optimization of multiple quality characteristics in two-point incremental forming of aluminum 1050 by grey relational analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
[2]. Attanasio, A., Ceretti, E., Giardini, C., & Mazzoni, L. (2008). Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. Journal of Materials Processing Technology, 197(1-3), 59-67.
[3]. Azevedo, N. G., Farias, J. S., Bastos, R. P., Teixeira, P., Davim, J. P., & de Sousa, R. J. A. (2015). Lubrication aspects during single point incremental forming for steel and aluminum materials. International Journal of Precision Engineering and Manufacturing, 16(3), 589-595.
[4]. Bhattacharya, A., Maneesh, K., Reddy, N. V., & Cao, J. (2011). Formability and surface finish studies in single point incremental forming. Journal of Manufacturing Science and Engineering, 133(6), 061020.
[5]. Cerro, I., Maidagan, E., Arana, J., Rivero, A., & Rodriguez, P. P. (2006). Theoretical and experimental analysis of the dieless incremental sheet forming process. Journal of Materials Processing Technology, 177(1-3), 404- 408.
[6]. Chinnaiyan, P., & Jeevanantham, A. K. (2014). Multi-objective optimization of single point incremental sheet forming of AA5052 using Taguchi based grey relational analysis coupled with principal component analysis. International Journal of Precision Engineering And Manufacturing, 15(11), 2309-2316.
[7]. Daleffe, A., Schaeffer, L., Fritzen, D., & Castelan, J. (2013). Analysis of the incremental forming of titanium F67 grade 2 sheet. In Key Engineering Materials (Vol. 554, pp. 195-203). Trans Tech Publications.
[8]. Desai, B. V., Desai, K. P., & Raval, H. K. (2014). Die-Less rapid prototyping process: Parametric investigations. Procedia Materials Science, 6, 666-673.
[9]. Durante, M., Formisano, A., & Langella, A. (2010). Comparison between analytical and experimental roughness values of components created by incremental forming. Journal of Materials Processing Technology, 210(14), 1934-1941.
[10]. Durante, M., Formisano, A., Langella, A., & Minutolo, F. M. C. (2009). The influence of tool rotation on an incremental forming process. Journal of Materials Processing Technology, 209(9), 4621-4626.
[11]. Echrif, S. B., & Hrairi, M. (2014). Significant parameters for the surface roughness in incremental forming process. Materials and Manufacturing Processes, 29(6), 697-703.
[12]. Emmens, W. C., Sebastiani, G., & van den Boogaard, A. H. (2010). The technology of incremental sheet forming—a brief review of the history. Journal of Materials Processing Technology, 210(8), 981-997.
[13]. Gulati, V., Aryal, A., Katyal, P., & Goswami, A. (2016). Process parameters optimization in single point incremental forming. Journal of The Institution of Engineers (India): Series C, 97(2), 185-193.
[14]. Hagan, E., & Jeswiet, J. (2004). Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(10), 1307-1312.
[15]. Hamilton, K., & Jeswiet, J. (2010). Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequences. CIRP Annals, 59(1), 311-314.
[16]. Hussain, G., Gao, L., Hayat, N., Cui, Z., Pang, Y. C., & Dar, N. U. (2008). Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. Journal of Materials Processing Technology, 203(1- 3), 193-201.
[17]. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. CIRP Annals-Manufacturing Technology, 54(2), 88-114.
[18]. Kurra, S., Regalla, S., & Gupta, A. K. (2016). Parametric study and multi-objective optimization in single-point incremental forming of extra deep drawing steel sheets. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5), 825-837.
[19]. Lasunon, O. U. (2013). Surface roughness in incremental sheet metal forming of AA5052. In Advanced Materials Research (Vol. 753, pp. 203-206). Trans Tech Publications.
[20]. Li, Y., Chen, X., Liu, Z., Sun, J., Li, F., Li, J., & Zhao, G. (2017). A review on the recent development of incremental sheet-forming process. The International Journal of Advanced Manufacturing Technology, 92(5-8), 2439-2462.
[21]. Liu, Z., Liu, S., Li, Y., & Meehan, P. A. (2014). Modeling and Optimization of Surface Roughness in Incremental Sheet forming using a Multi-objective Function. Materials and Manufacturing Processes, 29, 808-818.
[22]. Lu, B., Fang, Y., Xu, D. K., Chen, J., Ou, H., Moser, N. H., & Cao, J. (2014). Mechanism investigation of frictionrelated effects in single point incremental forming using a developed oblique roller-ball tool. International Journal of Machine Tools and Manufacture, 85, 14-29.
[23]. Majagi, S. D., Chandramohan, G., & Senthil Kumar, M. (2015). Effect of incremental forming process parameters on aluminum alloy using experimental studies. In Advanced Materials Research (Vol. 1119, pp. 633-639). Trans Tech Publications.
[24]. Mugendiran, V., Gnanavelbabu, A., & Ramadoss, R. (2014). Parameter optimization for surface roughness and wall thickness on AA5052 Aluminium alloy by incremental forming using response surface methodology. Procedia Engineering, 97, 1991-2000.
[25]. Mulay, A., Ben, S., Ismail, S., & Kocanda, A. (2017). Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 3997- 4010.
[26]. Najafabady, S. A., & Ghaei, A. (2016). An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. The International Journal of Advanced Manufacturing Technology, 87(9-12), 3579- 3588.
[27]. Oleksik, V., Pascu, A., Deac, C., Fleac, R., Bologa, O., & Racz, G. (2010). Experimental study on the surface quality of the medical implants obtained by single point incremental forming. International Journal of Material Forming, 3(1), 935-938.
[28]. Powers, B. M., Ham, M., & Wilkinson, M. G. (2010). Small data set analysis in surface metrology: An investigation using a single point incremental forming case study. Scanning, 32(4), 199-211.
[29]. Shanmuganatan, S. P., & Kumar, V. S. (2014). Modeling of Incremental forming process parameters of Al 3003 (O) by response surface methodology. Procedia Engineering, 97, 346-356.
[30]. Silva, P. J., Leodido, L. M., & Silva, C. R. M. (2013). Analysis of incremental sheet forming parameters and tools aimed at rapid prototyping. In Key Engineering Materials (Vol. 554, pp. 2285-2292). Trans Tech Publications.
[31]. Skjødt, M., Hancock, M. H., & Bay, N. (2007). Creating helical tool paths for single point incremental forming. In Key Engineering Materials (Vol. 344, pp. 583-590). Trans Tech Publications.
[32]. Vahdati, M., Mahdavinejad, R., Amini, S., & Moradi, M. (2015). Statistical analysis and optimization of factors affecting the Surface Roughness in UVaSPIF process using Response Surface Methodology. Journal of Advanced Materials and Processing, 3(1), 15-28.
[33]. Yamashita, M., Gotoh, M., & Atsumi, S. Y. (2008). Numerical simulation of incremental forming of sheet metal. Journal of Materials Processing Technology, 199(1- 3), 163-172.
[34]. Yao, Z., Li, Y., Yang, M., Yuan, Q., & Shi, P. (2017). Parameter optimization for deformation energy and forming quality in single point incremental forming process using response surface methodology. Advances in Mechanical Engineering, 9(7), 1-15.