Effect of Process Parameters on Surface Finish in Single Point Incremental Forming Process-A Review

Narinder Kumar*, R. M. Belokar **
* Research Scholar, Department of Production and Industrial Engineering, Punjab Engineering College, Chandigarh, India.
** Professor, Department of Production and Industrial Engineering, Punjab Engineering College, Chandigarh, India.
Periodicity:November - January'2019
DOI : https://doi.org/10.26634/jme.9.1.14818

Abstract

Single Point Incremental Forming (SPIF) is an emerging flexible forming process, which makes use of CNC milling machine to create complex parts having low volume production rate without using dedicated dies and tooling. A lot of research on this process has been carried out due to its several advantages like customized parts, economical and higher formability as compared to conventional forming process. To make this process more suitable for industry, it is necessary to overcome some of the challenges that is need some serious attention. In this paper, a systematic literature review is presented that studied the quantitative effect of the process parameters on the surface finish. A roadmap for the selection of experimental parameters on this process is proposed which may act as a reference for the researchers.

Keywords

Single Point Incremental Forming, Surface Roughness, Process Parameters.

How to Cite this Article?

Kumar, N., and Belokar, R. M. (2019). Effect of Process Parameters on Surface Finish in Single Point Incremental Forming Process-A Review. i-manager’s Journal on Mechanical Engineering, 9(1), 44-51. https://doi.org/10.26634/jme.9.1.14818

References

[1]. Asghari, S. A. A., Sarband, A. S., & Habibnia, M. (2017). Optimization of multiple quality characteristics in two-point incremental forming of aluminum 1050 by grey relational analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
[2]. Attanasio, A., Ceretti, E., Giardini, C., & Mazzoni, L. (2008). Asymmetric two points incremental forming: improving surface quality and geometric accuracy by tool path optimization. Journal of Materials Processing Technology, 197(1-3), 59-67.
[3]. Azevedo, N. G., Farias, J. S., Bastos, R. P., Teixeira, P., Davim, J. P., & de Sousa, R. J. A. (2015). Lubrication aspects during single point incremental forming for steel and aluminum materials. International Journal of Precision Engineering and Manufacturing, 16(3), 589-595.
[4]. Bhattacharya, A., Maneesh, K., Reddy, N. V., & Cao, J. (2011). Formability and surface finish studies in single point incremental forming. Journal of Manufacturing Science and Engineering, 133(6), 061020.
[5]. Cerro, I., Maidagan, E., Arana, J., Rivero, A., & Rodriguez, P. P. (2006). Theoretical and experimental analysis of the dieless incremental sheet forming process. Journal of Materials Processing Technology, 177(1-3), 404- 408.
[6]. Chinnaiyan, P., & Jeevanantham, A. K. (2014). Multi-objective optimization of single point incremental sheet forming of AA5052 using Taguchi based grey relational analysis coupled with principal component analysis. International Journal of Precision Engineering And Manufacturing, 15(11), 2309-2316.
[7]. Daleffe, A., Schaeffer, L., Fritzen, D., & Castelan, J. (2013). Analysis of the incremental forming of titanium F67 grade 2 sheet. In Key Engineering Materials (Vol. 554, pp. 195-203). Trans Tech Publications.
[8]. Desai, B. V., Desai, K. P., & Raval, H. K. (2014). Die-Less rapid prototyping process: Parametric investigations. Procedia Materials Science, 6, 666-673.
[9]. Durante, M., Formisano, A., & Langella, A. (2010). Comparison between analytical and experimental roughness values of components created by incremental forming. Journal of Materials Processing Technology, 210(14), 1934-1941.
[10]. Durante, M., Formisano, A., Langella, A., & Minutolo, F. M. C. (2009). The influence of tool rotation on an incremental forming process. Journal of Materials Processing Technology, 209(9), 4621-4626.
[11]. Echrif, S. B., & Hrairi, M. (2014). Significant parameters for the surface roughness in incremental forming process. Materials and Manufacturing Processes, 29(6), 697-703.
[12]. Emmens, W. C., Sebastiani, G., & van den Boogaard, A. H. (2010). The technology of incremental sheet forming—a brief review of the history. Journal of Materials Processing Technology, 210(8), 981-997.
[13]. Gulati, V., Aryal, A., Katyal, P., & Goswami, A. (2016). Process parameters optimization in single point incremental forming. Journal of The Institution of Engineers (India): Series C, 97(2), 185-193.
[14]. Hagan, E., & Jeswiet, J. (2004). Analysis of surface roughness for parts formed by computer numerical controlled incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 218(10), 1307-1312.
[15]. Hamilton, K., & Jeswiet, J. (2010). Single point incremental forming at high feed rates and rotational speeds: Surface and structural consequences. CIRP Annals, 59(1), 311-314.
[16]. Hussain, G., Gao, L., Hayat, N., Cui, Z., Pang, Y. C., & Dar, N. U. (2008). Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. Journal of Materials Processing Technology, 203(1- 3), 193-201.
[17]. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. CIRP Annals-Manufacturing Technology, 54(2), 88-114.
[18]. Kurra, S., Regalla, S., & Gupta, A. K. (2016). Parametric study and multi-objective optimization in single-point incremental forming of extra deep drawing steel sheets. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(5), 825-837.
[19]. Lasunon, O. U. (2013). Surface roughness in incremental sheet metal forming of AA5052. In Advanced Materials Research (Vol. 753, pp. 203-206). Trans Tech Publications.
[20]. Li, Y., Chen, X., Liu, Z., Sun, J., Li, F., Li, J., & Zhao, G. (2017). A review on the recent development of incremental sheet-forming process. The International Journal of Advanced Manufacturing Technology, 92(5-8), 2439-2462.
[21]. Liu, Z., Liu, S., Li, Y., & Meehan, P. A. (2014). Modeling and Optimization of Surface Roughness in Incremental Sheet forming using a Multi-objective Function. Materials and Manufacturing Processes, 29, 808-818.
[22]. Lu, B., Fang, Y., Xu, D. K., Chen, J., Ou, H., Moser, N. H., & Cao, J. (2014). Mechanism investigation of frictionrelated effects in single point incremental forming using a developed oblique roller-ball tool. International Journal of Machine Tools and Manufacture, 85, 14-29.
[23]. Majagi, S. D., Chandramohan, G., & Senthil Kumar, M. (2015). Effect of incremental forming process parameters on aluminum alloy using experimental studies. In Advanced Materials Research (Vol. 1119, pp. 633-639). Trans Tech Publications.
[24]. Mugendiran, V., Gnanavelbabu, A., & Ramadoss, R. (2014). Parameter optimization for surface roughness and wall thickness on AA5052 Aluminium alloy by incremental forming using response surface methodology. Procedia Engineering, 97, 1991-2000.
[25]. Mulay, A., Ben, S., Ismail, S., & Kocanda, A. (2017). Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(10), 3997- 4010.
[26]. Najafabady, S. A., & Ghaei, A. (2016). An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. The International Journal of Advanced Manufacturing Technology, 87(9-12), 3579- 3588.
[27]. Oleksik, V., Pascu, A., Deac, C., Fleac, R., Bologa, O., & Racz, G. (2010). Experimental study on the surface quality of the medical implants obtained by single point incremental forming. International Journal of Material Forming, 3(1), 935-938.
[28]. Powers, B. M., Ham, M., & Wilkinson, M. G. (2010). Small data set analysis in surface metrology: An investigation using a single point incremental forming case study. Scanning, 32(4), 199-211.
[29]. Shanmuganatan, S. P., & Kumar, V. S. (2014). Modeling of Incremental forming process parameters of Al 3003 (O) by response surface methodology. Procedia Engineering, 97, 346-356.
[30]. Silva, P. J., Leodido, L. M., & Silva, C. R. M. (2013). Analysis of incremental sheet forming parameters and tools aimed at rapid prototyping. In Key Engineering Materials (Vol. 554, pp. 2285-2292). Trans Tech Publications.
[31]. Skjødt, M., Hancock, M. H., & Bay, N. (2007). Creating helical tool paths for single point incremental forming. In Key Engineering Materials (Vol. 344, pp. 583-590). Trans Tech Publications.
[32]. Vahdati, M., Mahdavinejad, R., Amini, S., & Moradi, M. (2015). Statistical analysis and optimization of factors affecting the Surface Roughness in UVaSPIF process using Response Surface Methodology. Journal of Advanced Materials and Processing, 3(1), 15-28.
[33]. Yamashita, M., Gotoh, M., & Atsumi, S. Y. (2008). Numerical simulation of incremental forming of sheet metal. Journal of Materials Processing Technology, 199(1- 3), 163-172.
[34]. Yao, Z., Li, Y., Yang, M., Yuan, Q., & Shi, P. (2017). Parameter optimization for deformation energy and forming quality in single point incremental forming process using response surface methodology. Advances in Mechanical Engineering, 9(7), 1-15.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.