References
[1]. Bender, T., Kjaer, T. W., Thomsen, C. E., Sorensen, H. B., & Puthusserypady, S. (2013, July). Semi-supervised adaptation in SSVEP-based brain-computer interface using tri-training. In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE (pp. 4279-4282). IEEE.
[2]. Besio, W. G., Cao, H., & Zhou, P. (2008). Application of tripolar concentric electrodes and prefeature selection algorithm for brain–computer interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(2), 191-194.
[3]. Chan, F. H., Yang, Y. S., Lam, F. K., Zhang, Y. T., & Parker, P. A. (2000). Fuzzy EMG classification for prosthesis control. IEEE Transactions on Rehabilitation Engineering, 8(3), 305- 311.
[4]. Chang, B. C., & Seo, B. H. (2009, February). Development of new brain computer interface based on EEG and EMG. In Robotics and Biomimetics, 2008. ROBIO 2008. IEEE International Conference on (pp. 1665-1670). IEEE..
[5]. Chi, Y. M., & Cauwenberghs, G. (2009, September). Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE (pp. 4218-4221). IEEE.
[6]. Diez, P. F., Mut, V. A., Perona, E. M. A., & Leber, E. L. (2011). Asynchronous BCI control using high-frequency SSVEP. Journal of Neuroengineering and Rehabilitation, 8(1), 39.
[7]. Dilshad, A., Uddin, V., Naz, U., Parveen, S., Javid, T., & Memon, A. M. (2016). On the development of a novel, Plug and Play SSVEP-EEG based General Purpose Human- Computer Interaction device. Asian Journal of Engineering, Sciences & Technology, 1-5.
[8]. Fukuda, O., Tsuji, T., Kaneko, M., & Otsuka, A. (2003). A human-assisting manipulator teleoperated by EMG signals and arm motions. IEEE Transactions on Robotics and Automation, 19(2), 210-222.
[9]. Hasan, M. K., Mondal, C., Al Mahmud, N., & Ahmad, M. (2015, December). Performance analysis of SSVEP based wireless Brain computer Interface for wet and dry electrode. In Advances in Electrical Engineering (ICAEE), 2015 International Conference on (pp. 64-67). IEEE.
[10]. Hazrati, M. K., Husin, H. M., & Hofmann, U. G. (2013, September). Wireless brain signal recordings based on capacitive electrodes. In Intelligent Signal Processing (WISP), 2013 IEEE 8th International Symposium on (pp. 8-13). IEEE.
[11]. Jabode, J. S., & Shende, P. M. (2015). Literature review of Brain Computer Interface (BCI) using EEG signal. IJETT, 8(10), 1435-1467.
[12]. Lee, S., Shin, Y., Woo, S., Kin, K., & Lee, H-N. (2013). Dry electrode design and performance evaluation for EEG based BCI systems. 2013 International Winter Workshop on Brain-Computer Interface (BCI) (pp. 52-53). doi: 10.1109/IWW-BCI.2013.6506627
[13]. Lesenfants, D., Habbal, D., Lugo, Z., Lebeau, M., Horki, P., Amico, E., ...& Laureys, S. (2014). An independent SSVEP-based brain–computer interface in locked-in syndrome. Journal of Neural Engineering, 11(3), 035002.
[14]. Malmivuo, J., Ahokas, S., & Välkky, T. (2014, October). High-resolution EEG recording system using smart electrodes. In Electronic Conference (BEC), 2014 14th Biennial Baltic (pp. 21-24). IEEE.
[15]. Oehler, M., Neumann, P., Becker, M., Curio, G., & Schilling, M. (2008, August). Extraction of SSVEP signals of a capacitive EEG helmet for human machine interface. In Engineering in Medicine and Biology Society, 2008. EMBS 2008 30th Annual International Conference of the IEEE (pp. 4495-4498). IEEE.
[16]. Ramoser, H., Muller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441-446.
[17]. Resalat, S. N., & Afdideh, F. (2012, December). Realtime monitoring of military sentinel sleepiness using a novel SSVEP-based BCI system. In Biomedical Engineering and Sciences (IECBES), 2012 IEEE EMBS Conference on (pp. 740-745). IEEE.
[18]. Sullivan, T. J., Deiss, S. R., Jung, T. P., & Cauwenberghs, G. (2008, May). A brain-machine interface using dry-contact, low-noise EEG sensors. In Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium on (pp. 1986-1989). IEEE.
[19]. Wang, Y. T., Wang, Y., Cheng, C. K., & Jung, T. P. (2012, August). Measuring steady-state visual evoked potentials from non-hair-bearing areas. In Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE (pp. 1806-1809). IEEE.
[20]. Teng, C., Zhang, Y., & Wang, G. (2014). The removal of EMG artifact from EEG signals by the multivariate empirical mode decomposition. 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC) (pp. 873-876).