Comparison of Process Parameter Optimization of a Jig Boring process using Taguchi Based Grey Analysis and Genetic Algorithm

Vikas Kumar Sukhdeve*, S. K. Ganguly**
* Bhilai Institute of Technology, Durg, Chhattisgarh, India.
** Mechanical Engineering, Bhilai Institute of Technology, Durg, Chhattisgarh, India.
Periodicity:May - July'2019
DOI : https://doi.org/10.26634/jfet.14.4.14803

Abstract

In the present work few process parameters of a Jig Boring machine like 'Feed Rate', 'Depth of Cut' and 'Cutting Speed' have been optimized for best possible values of few performance parameters or target parameters like 'Vertical Reaction Force', 'Surface Roughness' and 'Material Removal Rate' for a Mild Steel work specimen. The grade of the steel used in the specimen is AISI 1040. Though optimization of process parameters of a Jig Boring machine has been done by many researchers or engineers previously, in the present work a mathematical model has been formulated by regression analysis from the experimental data created as per Taguchi method. Next, from the experimental data, Grey Relational Analysis has been done to predict the optimum combination of process parameters for the best result of performance parameters. Lastly, to validate the mathematical model which has been derived by regression analysis, optimization of the process parameters have been done using Genetic Algorithm optimization tool of MATLAB Program and the optimum result of the process parameters have been verified with the optimum result determined by Grey Relational Analysis.

Keywords

Design of Experiment (DOE), Taguchi Method, Grey Analysis, Genetic Algorithm, MATLAB.

How to Cite this Article?

Sukhdeve, V. M., and Ganguly, S. K. (2019). Comparison of Process Parameter Optimization of a Jig Boring Process Using Taguchi Based Grey Analysis and Genetic Algorithm. i-manager’s Journal on Future Engineering and Technology, 14(4), 58-66. https://doi.org/10.26634/jfet.14.4.14803

References

[1]. Andrén, L., Håkansson, L., Brandt, A., & Claesson, I. (2004). Identification of motion of cutting tool vibration in a continuous boring operation—correlation to structural properties. Mechanical Systems and Signal Processing, 18(4), 903-927. https://doi.org/10.1016/j.ymssp.2003. 09.009
[2]. Balaji, M., Murthy, B. S. N., & Rao, N. M. (2016). Optimization of cutting parameters in drilling of AISI 304 stainless steel using Taguchi and ANOVA. Procedia Technology, 25, 1106-1113. https://doi.org/10.1016/j. protcy.2016.08.217
[3]. Durairaj, M., Sudharsun, D., & Swamynathan, N. (2013). Analysis of process parameters in wire EDM with stainless steel using single objective Taguchi method and multi objective grey relational grade. Procedia Engineering, 64, 868-877. https://doi.org/10.1016/ j.proeng.2013.09.163
[4]. Equbal, M. I., Shamim, M., & Ohdar, R. K. (2014). A grey-based Taguchi method to optimize hot forging process. Procedia Materials Science, 6, 1495-1504. https://doi.org/10.1016/j.mspro.2014.07.129
[5]. Jeykrishnan, J., Ramnath, B. V., Elanchezhian, C., & Akilesh, S. (2017). Optimization of process parameters in Electro-chemical machining (ECM) of D3 die steels using Taguchi technique. Materials Today: Proceedings, 4(8), 7884-7891. https://doi.org/10.1016/j.matpr.2017.07.124
[6]. Lin, S. S., Chuang, M. T., Wen, J. L., & Yang, Y. K. (2009). Optimization of 6061 T 6 CNC boring process using the taguchi method and grey relational analysis. Open Industrial & Manufacturing Engineering Journal, 2(1), 14- 20. https://doi.org/10.2174/1874152500902010014
[7]. Lipin, K., & Govindan, P. (2013). A review on multiobjective optimization of drilling parameters using Taguchi methods. AKGEC Journal of Technology, 4(1), 11- 21.
[8]. Moshat, S., Datta, S., Bandyopadhyay, A., & Pal, P. (2010). Optimization of CNC end milling process parameters using PCA-based Taguchi method. International Journal of Engineering, Science and Technology, 2(1), 95-102.
[9]. Rao, D. B., Rao, K. V., & Krishna, A. G. (2018). A hybrid approach to multi response optimization of micro milling process parameters using Taguchi method based graph theory and matrix approach (GTMA) and utility concept. Measurement, 120, 43-51. https://doi.org/10.1016/j. measurement.2018.02.005
[10]. Rao, K. V., Murthy, B. S. N., & Rao, N. M. (2013). Cutting tool condition monitoring by analyzing surface roughness, work piece vibration and volume of metal removed for AISI 1040 steel in boring. Measurement, 46 (10), 4075-4084. https://doi.org/10.1016/j.measurement.2013.07.021
[11]. Roy, A. K., & Kumar, K. (2014). Effect and Optimization of Machine Process Parameters on MRR for EN19 & EN41 materials using Taguchi. Procedia Technology, 14, 204-210. https://doi.org/10.1016/j. protcy.2014.08.027
[12]. Saini, S. K., & Pradhan, S. K. (2014). Optimization of multi-objective response during cnc turning using taguchi-fuzzy application. Procedia Engineering, 97, 141-149. https://doi.org/10.1016/j.proeng.2014.12.235
[13]. Saravanakumar, A., Karthikeyan, S. C., & Dhamotharan, B. (2018). Optimization of CNC Turning Parameters on Aluminum Alloy 6063 using TaguchiRobust Design. Materials Today: Proceedings, 5(2), 8290-8298. https://doi.org/10.1016/j.matpr.2017.11.520
[14]. Senthilkumar N., Tamizharasan T. , & Anandakrishnan, V. (2014). Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis. Measurement, 58, 520-536. https://doi.org/10.1016/j.measurement.2014.09.025
[15]. Shi, K., Zhang, D., Ren, J., Yao, C., & Yuan, Y. (2014). Multiobjective optimization of surface integrity in milling TB6 alloy based on Taguchi-grey relational analysis. Advances in Mechanical Engineering, 6, 280313. https://doi.org/10.1155/2014/280313
[16]. Sukhdeve, V. K., & Ganguly, S. K. (2018). Optimization of operational parameter values of a jig boring process using grey analysis and SN ratio method. International Journal of Advanced in Management, Technology and Engineering Sciences, 8(2), 673-684.
[17]. Vankanti, V. K., & Ganta, V. (2014). Optimization of process parameters in drilling of GFRP composite using Taguchi method. Journal of Materials Research and Technology, 3(1), 35-41. https://doi.org/10.1016/j.jmrt. 2013.10.007
[18]. Xiao, W., Zi, Y., Chen, B., Li, B., & He, Z. (2014). A novel approach to machining condition monitoring of deep hole boring. International Journal of Machine Tools and Manufacture, 77, 27-33. https://doi.org/10.1016/j.ij machtools.2013.10.009

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

If you have access to this article please login to view the article or kindly login to purchase the article
Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.