References
[1]. Aggarwal, R. K., Johns, A. T., Jayasinghe, J. A. S. B., &
Su, W. (2000). An overview of the condition monitoring of
overhead lines. Electric Power Systems Research, 53(1),
15-22.
[2]. Ansari, R. A., & Buddhiraju, K. M. (2016, July). Textural
classification based on wavelet, curvelet and contourlet
features. In Geoscience and Remote Sensing
Symposium (IGARSS), 2016 IEEE International (pp. 2753-
2756). IEEE.
[3]. Asmare, M. H., Asirvadam, V. S., & Hani, A. F. M. (2015).
Image enhancement based on contourlet transform.
Signal, Image and Video Processing, 9(7), 1679-1690.
[4]. Burges, C. J. (1998). A tutorial on support vector
machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 121-167.
[5]. Candes, E. J., & Donoho, D. L. (2000). Curvelets: A
surprisingly effective nonadaptive representation for
objects with edges. Stanford Univ Ca Dept of Statistics.
[6]. Candès, E. J., & Donoho, D. L. (2004). New tight
frames of curvelets and optimal representations of
objects with piecewise C2 singularities. Communications
on Pure and Applied Mathematics: A Journal Issued by
the Courant Institute of Mathematical Sciences, 57(2),
219-266.
[7]. Candes, E., Demanet, L., Donoho, D., & Ying, L.
(2006). Fast discrete curvelet transforms. Multiscale
Modeling & Simulation, 5(3), 861-899.
[8]. Chang, C. C., & Lin, C. J. (2001). Training v-support
vector classifiers: theory and algorithms. Neural
Computation, 13(9), 2119-2147.
[9]. Chitaliya. N., & Trivedi, A. I. (2013). Facial Feature
Point Extraction for Object Identification using Discrete
Contourlet Transform and Principal Component Analysis.
In Adv. in Biometrics for Secure Human Authentication
and Recog., pp. 213-250. CRC Press.
[10]. Cortes, C., & Vapnik, V. (1995). Support-vector
networks. Machine Learning, 20(3), 273-297.
[11]. Dettori, L., & Semler, L. (2007). A comparison of
wavelet, ridgelet, and cur velet-based texture
classification algorithms in computed tomography.
Computers in Biology and Medicine, 37(4), 486-498.
[12]. Do, M. N., & Vetterli, M. (2001). Pyramidal directional
filter banks and curvelets. In Image Processing, 2001.
Proceedings. 2001 International Conference on (Vol. 3,
pp. 158-161). IEEE.
[13]. Do, M. N., & Vetterli, M. (2005). The contourlet
transform: An efficient directional multiresolution image
representation. IEEE Transactions on Image Processing,
14(12), 2091-2106.
[14]. El Aroussi, M., El Hassouni, M., Ghouzali, S., Rziza, M.,
& Aboutajdine, D. (2009, April). Block based curvelet
feature extraction for face recognition. In Multimedia
Computing and Systems, 2009. ICMCS'09. International
Conference on (pp. 299-303). IEEE.
[15]. Jones, D. I., & Earp, G. K. (2001). Camera sightline
pointing requirements for aerial inspection of overhead
power lines. Electric Power Systems Research, 57(2), 73-82.
[16]. Jones, D. I., Whitworth, C. C., Earp, G. K., & Duller, A.
W. G. (2005). A laboratory test-bed for an automated
power line inspection system. Control Engineering
Practice, 13(7), 835-851.
[17]. Joutel, G., Eglin, V., Bres, S., & Emptoz, H. (2007,
January). Curvelets based feature extraction of
hand written shapes for ancient manuscripts classification. In Document Recognition and Retrieval XIV
(Vol. 6500, p. 65000D). International Society for Optics
and Photonics.
[18]. Murthy, V. S., Gupta, S., & Mohanta, D. K. (2009).
Distribution system insulator monitoring using video
surveillance and support vector machines for complex
background images. International Journal of Power and
Energy Conversion, 1(1), 49-72.
[19]. Murthy, V. S., Mohanta, D. K., & Gupta, S. (2013).
Power system insulator condition monitoring automation
using mean shift tracker-FIS combined approach.
International Journal of Computer Aided Engineering
and Technology, 5(1), 1-19.
[20]. Murthy, V. S., Tarakanath, K., Mohanta, D. K., &
Gupta, S. (2010). Insulator condition analysis for
overhead distribution lines using combined wavelet
support vector machine (SVM). IEEE Transactions on
Dielectrics and Electrical Insulation, 17(1), 89-99.
[21]. Prasad, P. S., & Rao, B. P. (2017). Condition
monitoring of 11 kV overhead power distribution line
insulators using combined wavelet and LBP-HF features.
IET Generation, Transmission & Distribution, 11(5), 1144-
1153.
[22]. Prasad, P. S., & Rao, B. P. (2016a). Review on Machine
Vision based Insulator Inspection Systems for Power
Distribution System. Journal of Engineering Science &
Technology Review, 9(5).
[23]. Prasad, P. S., & Rao, B. P. (2016b, March). LBP-HF
features and machine learning applied for automated
monitoring of insulators for overhead power distribution
lines. In Wireless Communications, Signal Processing and Networking (WiSPNET), International Conference on (pp.
808-812). IEEE.s
[24]. Qi, Y. C., & Xing, X. S. (2011, May). Blind Detection of
Eclosion Forgeries Based on Cur velet Image
Enhancement and Edge Detection. In Multimedia and
Signal Processing (CMSP), 2011 International
Conference on (Vol. 1, pp. 316-320). IEEE.
[25]. Reddy, M. J. B., & Mohanta, D. K. (2013). Condition
monitoring of 11 kV distribution system insulators
incorporating complex imagery using combined DOSTSVM
approach. IEEE Transactions on Dielectrics and
Electrical Insulation, 20(2), 664-674.
[26]. Reddy, M. J. B., Chandra, B. K., & Mohanta, D. K.
(2011). A DOST based approach for the condition
monitoring of 11 kV distribution line insulators. IEEE
Transactions on Dielectrics and Electrical Insulation, 18(2).
[27]. Reddy, M. J. B., Meyur, R., Pal, D., Krantikumar, C., &
Mohanta, D. K. (2017). An on-line geographical
information system–based condition monitoring system
for 11-kv distribution line insulator. IEEE Electrical Insulation
Magazine, 33(3), 26-32.
[28]. Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Crossvalidation.
In Encyclopedia of Database Systems (pp.
532-538). Springer, Boston, MA.
[29]. Rodriguez, J. D., Perez, A., & Lozano, J. A. (2010).
Sensitivity analysis of k-fold cross validation in prediction
error estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 569-575.
[30]. Saraswathi, D., & Srinivasan, E. (2016). A highsensitivity
computer-aided system for detecting
microcalcifications in digital mammograms using
curvelet fractal texture features. Computer Methods in
Biomechanics and Biomedical Engineering: Imaging &
Visualization, 5(4), 263-273.
[31]. Sumana, I. J., Islam, M. M., Zhang, D., & Lu, G. (2008,
October). Content based image retrieval using curvelet
th transform. In Multimedia Signal Processing, 2008 IEEE 10
Workshop on (pp. 11-16). IEEE.
[32]. Uslu, E., & Albayrak, S. (2014). Curvelet-Based
Synthetic Aperture Radar Image Classification. IEEE
Geosci. Remote Sensing Lett., 11(6), 1071-1075.
[33]. Wang, X., & Zhang, Y. (2016, June). Insulator
identification from aerial images using Support Vector
Machine with background suppression. In Unmanned
Aircraft Systems (ICUAS), 2016 International Conference
on (pp. 892-897). IEEE.
[34]. Whitworth, C. C., Duller, A. W. G., Jones, D. I., & Earp,
G. K. (2001). Aerial video inspection of overhead power
lines. Power Engineering Journal, 15(1), 25-32.
[35]. Zhang, D., Li, W., & Xiong, X. (2014). Overhead line
preventive maintenance strategy based on condition
monitoring and system reliability assessment. IEEE
Transactions on Power Systems, 29(4), 1839-1846.