References
[1]. Apte, S. D. (2013). Speech and Audio Processing. Wiley Publication.
[2]. Aucouturier, J. J., & Pachet, F. (2002). Scaling up music playlist generation. In Multimedia and Expo, 2002. ICME'02. Proceedings. 2002 IEEE International Conference on (Vol. 1, pp. 105-108). IEEE.
[3]. Baratè, A., Haus, G., & Ludovico, L. A. (2005, September). Music analysis and modeling through Petri nets. In International Symposium on Computer Music Modeling and Retrieval (pp. 201-218). Springer, Berlin, Heidelberg.
[4]. Barros, P., Weber, C., & Wermter, S. (2016, July). Learning auditory neural representations for emotion recognition. In Neural Networks (IJCNN), 2016 International Joint Conference on (pp. 921-928). IEEE.
[5]. Bertin-Mahieux, T., Eck, D., & Mandel, M. (2011). Automatic tagging of audio: The state-of-the-art. In Machine Audition: Principles, Algorithms and Systems (pp. 334-352). IGI Global.
[6]. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... & Zhang, X. (2016). End to end learning for self-driving cars.arXivpreprint arXiv:1604.07316
[7]. Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2013, November). Audio Chord Recognition with Recurrent Neural Networks. In ISMIR (pp. 335-340).
[8]. Choi, K., Fazekas, G., & Sandler, M. (2016). Explaining deep convolutional neural networks on music classification. arXiv preprint arXiv:1607.02444.
[9]. Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017, March). Convolutional recurrent neural networks for music classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2392-2396). IEEE.
[10]. Dalvi, N., Domingos, P., Sanghai, S., & Verma, D. (2004, August). Adversarial classification. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 99-108). ACM.
[11]. Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends® in Signal Processing, 7(3-4), 197-387.
[12]. Dieleman, S., & Schrauwen, B. (2014, May). End-toend learning for music audio. In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on (pp. 6964-6968). IEEE.
[13]. Durand, S., Bello, J. P., David, B., & Richard, G. (2016, March). Feature adapted convolutional neural networks for downbeat tracking. In Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on (pp. 296-300). IEEE.
[14]. Eck, D., & Schmidhuber, J. (2002). A first look at music composition using LSTM recurrent neural networks. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 103.
[15]. Ewert, S., Pardo, B., Müller, M., & Plumbley, M. D. (2014). Score-informed source separation for musical audio recordings: An overview. IEEE Signal Processing Magazine, 31(3), 116-124.
[16]. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572
[17]. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep Learning (Vol. 1). Cambridge: MIT Press.
[18]. Hamel, P., & Eck, D. (2010, August). Learning Features from Music Audio with Deep Belief Networks. In ISMIR (Vol. 10, pp. 339-344).
[19]. Han, Y., Kim, J., Lee, K., Han, Y., Kim, J., & Lee, K. (2017). Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Transactions on Audio, Speech and Language Processing (TASLP), 25(1), 208-221.
[20]. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A. R., Jaitly, N., ... & Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6), 82-97.
[21]. Kereliuk, C., Sturm, B. L., & Larsen, J. (2015). Deep learning and music adversaries. IEEE Transactions on Multimedia, 17(11), 2059-2071.
[22]. Klinger, R., & Rudolph, G. (2006). Evolutionary composition of music with learned melody evaluation. In Proceedings of the Int. Conference on Computational Intelligence, Man-machine Systems and Cybernetics (CIMMACS'06).
[23]. Lee, H., Pham, P., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances in Neural Information Processing Systems (pp. 1096-1104).
[24]. Li, T. L., Chan, A. B., & Chun, A. (2010, March). Automatic musical pattern feature extraction using convolutional neural network. In Proc. Int. Conf. Data Mining and Applications (pp. 546-550).
[25]. Liu, I., & Ramakrishnan, B. (2014). Bach in 2014: Music composition with recurrent neural network. arXiv preprint arXiv:1412.3191
[26]. Lu, R., Wu, K., Duan, Z., & Zhang, C. (2017, March). Deep ranking: Triplet MatchNet for music metric learning. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 121-125). IEEE.
[27]. Makarand, V., & Parag, K. (2018). Unified algorithm for melodic music similarity and retrieval in query by Humming. In Intelligent Computing and Information and Communication (pp. 373-381). Springer, Singapore.
[28]. Makarand, V., & Sahasrabuddhe, H. V. (2014, January). Novel approach for music search using music contents and human perception. In Electronic Systems, Signal Processing and Computing Technologies (ICESC), 2014 International Conference on (pp. 1-6). IEEE.
[29]. Mozer, M. C. (1994). Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3), 247-280.
[30]. Muller, M., Ellis, D. P., Klapuri, A., & Richard, G. (2011). Signal processing for music analysis. IEEE Journal of Selected Topics in Signal Processing, 5(6), 1088-1110.
[31]. Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 427-436).
[32]. Parascandolo, G., Huttunen, H., & Virtanen, T. (2016). Recurrent neural networks for polyphonic sound event detection in real life recordings. arXiv preprint arXiv:1604.00861
[33]. Pons, J., & Serra, X. (2017, March). Designing efficient architectures for modeling temporal features with convolutional neural networks. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 2472-2476). IEEE.
[34]. Ramesh, V. M. (2008, July). Exploring Data Analysis in Music using tool Praat. In Emerging Trends in Engineering and Technology, 2008. ICETET'08. First International Conference on (pp. 508-509). IEEE.
[35]. Roads, C., & Strawn, J. (1996). The Computer Music Tutorial. MIT Press.
[36]. Rosa, R. L., Rodriguez, D. Z., & Bressan, G. (2015). Music recommendation system based on user's sentiments extracted from social networks. IEEE Transactions on Consumer Electronics, 61(3), 359-367.
[37]. Serra, X. (2014, January). Creating research corpora for the computational study of music: The case of the CompMusic project. In Audio Engineering Society Conference: 53rd International Conference: Semantic Audio (pp. 1-9). Audio Engineering Society.
[38]. Sigtia, S., Benetos, E., & Dixon, S. (2016). An end-toend neural network for polyphonic piano music transcription. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(5), 927-939.
[39]. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[40]. Sturm, B. L. (2014). The state of the art ten years after a state of the art: Future research in music information retrieval. Journal of New Music Research, 43(2), 147-172.
[41]. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199.
[42]. Ullrich, K., Schlüter, J., & Grill, T. (2014, August). Boundary Detection in Music Structure Analysis using Convolutional Neural Networks. In ISMIR (pp. 417-422).
[43]. Van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. In Advances in Neural Information Processing Systems (pp. 2643-2651).
[44]. Wang, X., & Wang, Y. (2014, November). Improving content-based and hybrid music recommendation using deep learning. In Proceedings of the 22nd ACM International Conference on Multimedia (pp. 627-636). ACM.5
[45]. Xu, Y., Huang, Q., Wang, W., Foster, P., Sigtia, S., Jackson, P. J., & Plumbley, M. D. (2017). Unsupervised feature learning based on deep models for environmental audio tagging. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(6), 1230- 1241.
[46]. Yang, Y. H., & Chen, H. H. (2011). Music Emotion Recognition. CRC Press.