References
[2]. Abdel-Ghani, N. T., & El-Chaghaby, G. A. (2014).
Biosorption for metal ions removal from aqueous solutions:
A review of recent studies. International Journal of Latest
Research in Science and Technology (IJLRST), 3(1), 24-42.
[4]. Allen Jr, L. H., Sinclair, T. R., & Bennett, J. M. (1997).
Evapotranspiration of vegetation of Florida: perpetuated misconceptions versus mechanistic processes. In
Proceedings-Soil and Crop Science Society of Florida (Vol.
56, pp. 1-10).
[5]. Allsopp, W. H. L. (1960). The manatee: ecology and use
for weed control. Nature, 188, 762-762.
[6]. Almoustapha, O., Kenfack, S., & Millogo-Rasolodimby,
J. (2008). Biogas production using water hyacinths to meet
collective energy needs in a sahelian country. The Journal
of Field Actions, 1, 73-77.
[7]. Bagnall, L. O. (1982). Bulk mechanical properties of
waterhyacinth. Journal of Aquat Plant Management, 20,
49-53.
[10]. Bhattacharya, A., & Kumar, P. (2010). Water hyacinth
as a potential biofuel crop. Electronic Journal of
Environmental, Agricultural and Food Chemistry, 9(1), 112-122.
[13].
Cheng, J., Xie, B., Zhou, J., Song, W., & Cen, K. (2010).
Cogeneration of H2 and CH4 from water hyacinth by twostep anaerobic fermentation. International Journal of
Hydrogen Energy, 35(7), 3029-3035.
[14].
Chigbo, F. E., Smith, R. W., & Shore, F. L. (1982). Uptake
of arsenic, cadmium, lead and mercury from polluted waters by the water hyacinth Eichornia crassipes.
Environmental Pollution Series A, Ecological and
Biological, 27(1), 31-36.
[15]. Crites, R. W. (1988). Design Manual: Constructed
Wetlands and Aquatic Plant Systems for Municipal
Wastewater Treatment. US Environmental Protection
Agency, Office of Research and Development, Center for
Environmental Research Information.
[16]. Damron, B. L., & Wilson, H. R. (1998). Geese for Water
Hyacinth Control. University of Florida Cooperative
Extension Service, Institute of Food and Agriculture
Sciences, EDIS.
[18].
De Groote, H., Ajuonu, O., Attignon, S., Djessou, R., &
Neuenschwander, P. (2003). Economic impact of
biological control of water hyacinth in Southern Benin.
Ecological Economics, 45(1), 105-117.
[19]. Del Mar Delgado, M., Bigeriego, M., Walter, I., &
Guardiola, E. (1994). Optimization of conditions for the
growth of water hyacinth in biological treatment. Revista
Internacional De-Contaminacion Ambiental. Tlaxcala,
10(2), 63-68.
[22]. Duke, J. A. (1985). Handbook of energy crops
(Unpublished), Buderkin DA Diseases of Forest and
Ornamental Trees. Hong Kong.
[24]. Ekpete, O. A., Kpee, F., Amadi, J. C., & Rotimi, R. B.
(2010). Adsorption of chromium (VI) and zinc (II) ions on the
skin of orange peels (Citrus sinensis). Journal of Nepal
Chemical Society, 26, 31-39.
[26]. Emdadi, Z., Asim, N., Ramali, Z. A. C., Yarmo, M. A.,
Shamsudin, R., & Sopian, K. (2014). Feasibility study of using
rice husk and its treated forms with alkali solution as a
desiccant material. WSEAS Transactions on Environment
and Development, 10(1), 306-311.
[27].
Ezeri, G. O., Ofojekwu, P., Ezenwaka, I., & Alegbeleye,
W. (2002). Effect of herbicidal control of water hyacinth on
fish health at the ere channel, Ogun State, Nigeria. Journal
of Applied Sciences and Environmental Management,
6(1), 49-52.
[32]. Harley, K. L. S., Julien, M. H., & Wright, A. D. (1996).
Water hyacinth: A tropical world wide problem and methods for its control. In Proceedings of the First Meeting
of the International Water Hyacinth Consortium, World
Bank.
[33]. Hasan, M. R., & Rina, C. (2009). Use of algae and
Aquatic Macrophytes as Feed in Small-Scale Aquaculture:
A Review. Food and Agriculture Organization of the United
Nations (FAO), Italy.
[36].
Hering, J. G., Katsoyiannis, I. A., Theoduloz, G. A.,
Berg, M., & Hug, S. J. (2017). Arsenic removal from drinking
water: Experiences with technologies and constraints in
practice (Doctoral dissertation), Journal of Environmental
Engineering, 143(5), 1-9.
[37]. Hossain, M. E., Kabir, M. H., & Sarma, S. M., & Sikder, H.
(2015). Nutritive value of sal seed (shorea robusta). Online
Journal of Animal and Feed Research (OJAFR), 5(1), 28-32.
[38].
Hu, C., Zhang, L., Hamilton, D., Zhou, W., Yang, T., &
Zhu, D. (2007). Physiological responses induced by copper
bioaccumulation in Eichhornia crassipes (Mart.).
Hydrobiologia, 579(1), 211-218.
[39]. Huong, L. T. L., & Hoa, B. T. (2016). Initial study of heavy
metals' absorbability of some aquatic plants in the water of
West Lake-Hanoi. VNU Journal of Science: Natural Sciences
and Technology, 32(1S), 77-82.
[40].
Lin, R., Cheng, J., Song, W., Ding, L., Xie, B., Zhou, J., &
Cen, K. (2015). Characterisation of water hyacinth with
microwave-heated alkali pretreatment for enhanced
enzymatic digestibility and hydrogen/methane
fermentation. Bioresource Technology, 182, 1-7.
[42]. Islam, M. S., Wahid-Uz-Zaman, M., & Rahman, M. M.
(2013). Phytoaccumulation of arsenic from arsenic
contaminated soils by Eichhornia Crassipes L.,
Echinochloa Crusgalli L. and Monochoria Hastata L. in
Bangladesh. International Journal of Environmental
Protection, 3(4).
[48].
Kulkarni, M. R., Revanth, T., Acharya, A., & Bhat, P.
(2017). Removal of crystal violet dye from aqueous solution
using water hyacinth: Equilibrium, kinetics and
thermodynamics study. Resource-Efficient Technologies,
3(1), 71-77.
[49]. Kumar, D. K. K., & Rajakumar, S. (2016). Review on biogas production from codigestion of cow dung and
foodwaste with water hyacinth. International Journal of
Research in Science and Technology, 6(1), 119-124.
[50]. Lindsey, K., & Hirt, H. M. (1999). Use Water Hyacinth: A
Practical Handbook of Uses for the Water Hyacinth from
Across the World (1st Ed.). Anamed: Winnenden, Germany.
[53]. Lu, Q. (2009). Evaluation of aquatic plants for
phytoremediation of eutrophic storm waters (Doctoral
dissertation), University of Florida, Gainesville, FL.
[54].
Ma, F., Yang, N., Xu, C., Yu, H., Wu, J., & Zhang, X.
(2010). Combination of biological pretreatment with mild
acid pretreatment for enzymatic hydrolysis and ethanol
production from water hyacinth. Bioresource Technology,
101(24), 9600-9604.
[56]. Mahmood, Q., Zheng, P., Islam, E., Hayat, Y., Hassan,
M. J., Jilani, G., & Jin, R. C. (2005). Lab scale studies on
water hyacinth (Eichhornia crassipes Marts Solms) for
biotreatment of textile wastewater. Caspian Journal of
Environmental Sciences, 3(2), 83-88.
[58]. Malviya, K.,Parashar, C., &Dixit, S. (2015). Removal of
acid blue-7 dye from aqueous solution using water
hyacinth as a adsorbent : Adsorption equilibrium isotherms.
International Journal of Modern Trends in Engineering and Research, 2(8), 9-14.
[60]. Murithi, G., Onindo, C. O., Wambu, E. W., & Muthakia,
G. K. (2014). Removal of cadmium (II) ions from water by
adsorption using water hyacinth (Eichhornia crassipes)
biomass. Bioresources, 9(2), 3613-3631.
[62]. Muthunarayanan, V., Santhiya, M., Swabna, V., &
Geetha, A. (2011). Phytodegradation of textile dyes by
water hyacinth (Eichhornia crassipes) from aqueous dye
solutions. International Journal of Environmental Sciences,
1(7), 1702-1717.
[64]. Obi, C. (2015). Sorption characteristics of water
hyacinth leaf biomass on the removal of CU (II) ion from
aqueous solution. International Journal of Innovative
Agriculture and Biology Research, 3(3), 36-43.
[65]. Otaraku, I. J., & Ogedengbe, E. V. (2013). Biogas
production from sawdust waste, cow dung and water
hyacinth-effect of sawdust concentration. International
Journal of Application or Innovation in Engineering &
Management, 2(6), 91-93.
[68]. Poonkothai, M., & Vijayavathi, B. S. (2015).
Physicochemical characterisation of nickel electroplating
effluent before and after treatment with dead Aspergillus
niger. International Research Journal of Pharmaceutical
and Biosciences, 2(6), 1-13.
[70]. Rabbi, M., et al. (2014). Production of biogas from codigestion of chicken excreta and water hyacinth. In
Proceedings of the 15th Annual Paper Meet.
[72].
Rai, S., Narayanswami, M. S., Hasan, S. H., Rupainwr,
D. C., & Sharma, Y. C. (1994). Removal of cadmium from
wastewater by water hyacinth. International Journal of
Environmental Studies, 46(4), 251-262.
[73]. Rathor, G., Chopra, N., & Adhikari, T. (2014). Nickel as
a pollutant and its management. International Research
Journal of Environmental Science, 3(10), 94-98.
[74].
Rezania, S., Din, M. F. M., Taib, S. M., Dahalan, F. A.,
Songip, A. R., Singh, L., & Kamyab, H. (2016). The efficient
role of aquatic plant (water hyacinth) in treating domestic
wastewater in continuous system. International Journal of
Phytoremediation, 18(7), 679-685.
[75].
Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad,
S. E., Din, M. F. M., Taib, S. M.,Sabbagh, F& Sairan, F. M.
(2015). Perspectives of phytoremediation using water
hyacinth for removal of heavy metals, organic and
inorganic pollutants in wastewater. Journal of
Environmental Management, 163, 125-133.
[76]. Rizwana, M., Darshan, M., & Nilesh, D. (2014).
Phytoremediation of textile waste water using potential
wetland plant: Eco sustainable approach. International Journal of Interdisciplinary and Multidisciplinary Studies
(IJIMS), 1(4), 130-138.
[77]. Rushing, W. N. (1973). Water Hyacinth Research in
Puerto Rico. Waterways Experiment Station, Mobility and
Environmental System (pp. 48-52).
[80]. Shaha, S. S., & Rajemahadik, C. F. (2007). Control of
water hyacinth- A case study. In Proceedings of Taal 2007:
The 12th World Lake Conference, Jaipur, Rajasthan, India
(Vol. 1051, pp. 1051-1057).
[81].
Sindhu, R., Binod, P., Pandey, A., Madhavan, A.,
Alphonsa, J. A., Vivek, N.,Gnansounou E, Castro, E., &
Faraco, V. (2017). Water hyacinth a potential source for
value addition: An overview. Bioresource Technology, 230,
152-162.
[88]. Thangavel, P., & Subbhuraam, C. V. (2004).
Phytoextraction: Role of hyperaccumulators in metal
contaminated soils. Proceedings-Indian National Science
Academy Part B, 70(1), 109-130.
[89]. Tichaona, N., & Ngwenya, J. T. (2013). Single and
binary sorption of lead (II) and zinc (II) ions onto Eichhornia
Crassipes (water hyacinth) ash. International Journal of
Engineering Science and Innovative, 2(4), 419-426.
[92]. Valipour, A., Raman, V. K., & Motallebi, P. (2010).
Application of shallow pond system using water hyacinth
for domestic wastewater treatment in the presence of high
total dissolved solids (tds) and heavy metal salts.
Environmental Engineering & Management Journal
(EEMJ), 9(6), 853-860.
[93]. Van Driesche, R. (2002). Biological Control of Invasive
Plants in the Eastern United States. US Department of
Agriculture, Forest Service, Forest Health Technology
Enterprise Team. West Virginia.
[94]. Vidya, S. H. A. R. D. A., & Girish, L. A. K. S. H. M. I. (2014).
Water hyacinth as a green manure for organic farming.
International Journal of Research Applied National Social Science, 2(6), 65-72.
[97]. Wilson, H. R., Harms, R. H., & Damron, B. L. (1977,
January). Potential of geese in control and utilization of
water hyacinths. In Poultry Science (Vol. 56, No. 4, pp. 1360-1361). Poultry Science Assoc Inc.
[101]. Zhang, Y., Zheng, R., Zhao, J., Ma, F., Zhang, Y., &
Meng, Q. (2014). Characterization of-treated rice husk.