References
[1]. Azadeh, A., Mianaei, H. S., Asadzadeh, S. M., Saberi,
M., & Sheikhalishahi, M. (2015). A flexible ANN-GAmultivariate
algorithm for assessment and optimization of
machinery productivity in complex production units.
Journal of Manufacturing Systems, 35, 46-75.
http://doi.org/10.1016/j.jmsy.2014.11.007
[2]. Chen, Y., Sun, R., Gao, Y., & Leopold, J. (2017). A
nested-ANN prediction model for surface roughness
considering the effects of cutting forces and tool vibrations.
Measurement: Journal of the International Measurement
Confederation, 98, 25-34. http://doi.org/10.1016/
j.measurement.2016.11.027
[3]. Das, B., Roy, S., Rai, R. N., & Saha, S. C. (2016). Study on
machinability of in-situ Al 4.5%Cu, TiC metal matrix
composite-surface finish, cutting force prediction using
ANN. CIRP Journal of Manufacturing Science and
Technology, 12, 67-78. http://doi.org/10.1016
/j.cirpj.2015.10.002
[4]. Devarasiddappa, D., George, J., Chandrasekaran, M., & Teyi, N. (2016). Application of Artificial Intelligence
Approach in Modeling Surface Quality of Aerospace Alloys
in WEDM Process. Procedia Technology, (RAEREST), 25,
1199-1208. http://doi.org/10.1016/ j.protcy.2016.08.239
[5]. Nayak, B. B., & Mahapatra, S. S. (2016). Optimization of
WEDM process parameters using deep cryo-treated
Inconel 718 as work material. Engineering Science and
Technology, an International Journal, 19(1), 161-170.
http://doi.org/10.1016/j.jestch.2015.06.009
[6]. Niu, X., Yang, C., Wang, H., & Wang, Y. (2017).
Investigation of ANN and SVM based on limited samples for
performance and emissions prediction of a CRDI-assisted
marine diesel engine. Applied Thermal Engineering, 111,
1353-1364. http://doi.org/10.1016/j.applthermaleng. 2016.10.042
[7]. Payal, H., Maheshwari, S., & Bharti, P. S. (2017). Process
Modeling of Electric Discharge Machining of Inconel 825
using Artificial Neural Network, Int. J. Mech. Aerosp. Ind.
Mechatron. Manufac. Eng.,11(3), 562-566.
[8]. Prabhu, S., & Vinayagam, B. K. (2016). Evaluation of
Surface Roughness of Carbon Nanotube TMT Nanosteel
Material using Taguchi Analysis and Neural Networks, 39(3),
718-729.
[9]. Sangwan, K. S., Saxena, S., & Kant, G. (2015).
Optimization of machining parameters to minimize
surface roughness using integrated ANN-GA approach.
Procedia CIRP, 29, 305-310. http://doi.org/10.1016/
j.procir.2015.02.002