References
[1]. Ayo, S. A. (2009). Design, construction and testing of an
improved wood stove. AU JT, 13(1), 12-18.
[2]. Bryden, M., Still, D., Scott, P., Hoffa, G., Ogle, D., Bailis,
R., & Goyer, K. (2005). Design Principals for Wood Burning
Cook Stoves. Aprovecho Research Center.
[3]. Cast Iron or Steel Wood Burning Stoves – Which is best?.
Stoves are Us Blog. Retrieved from https://stovesareus.
word press. com/2011/06/07/cast-iron-or-steel-woodburning-stoves-which-is-best/ [Cited 15.06.2016]
[4]. Cengel, Y. A. (2002). Heat Transfer: A Practical
nd Approach. 2 Ed. The McGraw-Hill Companies Inc., New
York, 2002.
[5]. Dhopte, B., Mundhe, S., & Kokil, P. (2015). Biomass
stove: Effect of air to fuel ratio on thermal efficiency.
International Journal of Engineering Research and
Technology, 4(6), 960-963.
[6]. Drave, A., & Mishra, K. P.(2016). Development of energy
efficient cooking systems for rural masses. International
Journal of Management, Information Technology and
Engineering, 4(2), 37-48.
[7]. Ekouevi, K., Freeman, K. K., & Soni, R. (2014).
Understanding the Differences between Cookstoves. Live
Wire, Washington DC, World Bank, 2014. Retrieved from
https://openknowledge.worldbank.org/handle/10986/184
11. [Cited 11.06.2016]
[8]. Fluent Inc. (2009). ANSYS Fluent 12.0 Users' Guide.
[9]. Furbo, E. (2010). Evaluation of RANS turbulence models
for flow problems with significant impact of boundary
layers [MS Thesis]. Uppsala University, Sweden, 2010.
[10]. Heat Transfer and Cooking. Cooking for Engineers.
Retrieved from http://www.cookingforengineers.com/
article/224/Heat-Transfer-and-Cooking. [Cited 01.07.2016]
th [11]. Holman, J. P. (2010). Heat Transfer. 10 ed. The
McGraw-Hill Companies Inc., New York.
[12]. Honkalaskar, V. H, Bhandarkar, U. V, & Sohoni, M.
(2013). Development of a fuel efficient cookstove through
a participatory bottom-up approach. Energy, Sustainability
and Society, 3(1), 16.
[13]. Household Air Pollution and Health. World Health
Organization. Retrieved from http://www.who.int/
mediacentre/factsheets/fs292/en/. [Cited16.06.2016]
[14]. Huangfu, Y., Li, H., Chen, X., Xue, C., Chen, C., & Liu, G.(2014). Effects of moisture content in fuel on thermal
performance and emission of biomass semi-gasified
cookstove. Energy for Sustainable Development, 21, 60-
65.
[15]. Incropera, F. P., Dewitt, D. P., Lavine, A. S., & Bergman,
th T. L.(2011). Fundamentals of Heat and Mass Transfer, 7 Ed.
John Wiley & Sons Inc.
[16]. Khan, A. H. M. R., Eusuf, M., Prasad, K. K., Moerman,
E., Cox, M. G. D. M., Visser, A. M. J., & Drisser, J. A. J. (1995).
The development of improved cooking stove adapted to
the conditions in Bangladesh. Final report of collaborative
research project between IFRD, BCSIR, Dhaka, Bangladesh
and Eindhoven University of Technology, Eindhoven, The
Netherlands, 1995.
[17]. Kontogeorgos, D., Keramida, E., & Founti, M. (2003).
Radiative heat transfer modeling of natural gas diffusion
flames. First European Combustion Meeting, Orleans,
France, 25-28.
[18]. Kshirsagar, M. P., & Kalamkar, V. R. (2014). A
comprehensive review on biomass cookstoves and a
systematic approach for modern cookstove design.
Renewable and Sustainable Energy Reviews, 30, 580-603.
[19]. Kshirsagar, M. P., & Kalamkar, V. R. (2015). A
mathematical tool for predicting thermal performance of
natural draft biomass cookstoves and identification of a
new operational parameter. Energy, 93, 188-201.
[20]. MacCarty, N. A. (2013). A zonal model to aid in the
design of household biomass cookstoves [MS Thesis].
Ames, Iowa: Iowa State University, 2013.
[21]. MacCarty, N. A., & Bryden, K. M. (2015). Modeling of
household biomass cookstoves: A review. Energy for
Sustainable Development, 26, 1-13.
[22]. MacCarty, N., Ogle, D., Still, D., Bond, T., & Roden, C.
(2008). A laboratory comparison of the global warming
impact of five major types of biomass cooking stoves.
Energy for Sustainable Development, 12(2), 56-65.
[23]. Ministry of New and Renewable Energy. (2016).
National Biomass Cookstove Programme. Government of
India. Retrieved from http://www.mnre.gov.in/schemes/
decentralized-systems/national-biomass-cookstovesinitiative/.
[Cited 25.06.2016]
[24]. Muralidharan, V., Sussan, T. E., Limaye, S. , Koehler, K.,
Williams, D., Rule, A. M., & Biswal, S. (2015). Field testing of
alternative cookstove performance in a rural setting of
western India. International Journal of Environmental
Research and Public Health, 12(2), 1773-1787.
[25]. Novozhilov, V., Moghtaderi, B., Fletcher, D. F., & Kent,
J. H. (1996). Computational fluid dynamics modelling of
wood combustion. Fire Safety Journal, 27(1), 69-84.
[26]. Ochieng, C. A., Tonne, C., & Vardoulakis, S. (2013). A
comparison of fuel use between a low cost, improved
wood stove and traditional three-stone stove in rural Kenya.
Biomass and Bioenergy, 58, 258-266.
[27]. Ragland, K. W., Aerts, D. J., & Baker, A. J. (1991).
Properties of wood for combustion analysis. Bioresource
Technology, 37(2), 161-168.
[28]. Rajanna, A. H., Shyamala, D.C., & Belagali, S. L.
(2014). Safer chulha for rural area households in India.
International Journal of Innovative Research in Science,
Engineering and Technology, 3(1), 8884-8888.
[29]. Raman, P., Murali, J., Sakthivadivel, D., &
Vigneswaran, V. (2013). Evaluation of domestic cookstove
technologies implemented across the world to identify
possible options for clean and efficient cooking solutions.
Journal of Energy and Chemical Engineering, 1(1), 15-26.
[30]. Ravi, M.R., Kohli, S., & Ray, A. (2002). Use of CFD
simulation as a design tool for biomass stoves. Energy for
Sustainable Development, 6(2), 20-27.
[31]. Ruiz-Mercado, I., Masera, O., Zamora, H., & Smith K.
R.(2011). Adoption and sustained use of improved
cookstoves. Energy Policy, 39(12), 7557-7566.
[32]. Sayma, A. (2006). Computational Fluid Dynamics.
Bookboon.
[33]. Sowgath, M. T., Rahman, M. M., Nomany, S. A., Sakib
M. N. , & Junayed, M. (2015). CFD study of biomass
cooking stove using Autodesk simulation CFD to improve
energy efficiency and emission characteristics. Chemical
Engineering Transactions, 45, 1255-1260.
[34]. Sutar, K. B., Kohli, S., Ravi, M. R., & Ray, A. (2015).
Biomass cookstoves: A review of technical aspects.
Renewable and Sustainable Energy Reviews, 41, 1128-
1166.
[35]. The Environment Department. (2011). Household
cookstoves, environment, health, and climate change: A
new look at an old problem. The World Bank, 2011.
[36]. The Water Boiling Test Version 4.2.3 (2014). Global
Alliance for Clean Cookstoves, 19 March 2014. Retrieved
from http://cleancookstoves.org/technology-and
fuels/testing/protocols.html. [Cited 13.06.2016].
[37]. Thermal insulation materials, technical
characteristics and selection criteria. (2016). Food and
Agriculture Organization of the United Nations (Corporate
Document Repository). Retrieved from http://www.fao.org/
docrep/006/y5013e/y5013e08.html. [Cited 19.06.2016]
[38]. Varunkumar, S, Rajan, N. K. S., & Mukunda, H. S.
(2011). Experimental and computational studies on a
gasifier based stove. Energy Conversation Management,
53, 135-141.
[39]. Verma, A. R. (2016). Designing New Generation
Stoves. Indian Institute of Technology, Delhi, India. Retrieved
from http://web.iitd.ac.in/~vkvijay/Improved%20
Cookstoves.pdf. [Cited10.06.2016]
[40]. Weerasinghe, R., & Bandara, P. (2002).
Computational modelling of cook stoves. Engineering
Research Unit Symposium, University of Moratuwa, Sri Lanka.