References
[1]. Ates, A., Kundakci, M., Akaltun, Y., Gurbulak, B., & Yildirim, M. (2007). Effective mass calculation for InSe, InSe: Er crystals. Physica E: Low-dimensional Systems and Nanostructures, 36(2), 217-220.
[2]. Bindu P. & Thomas S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8(4), 123-134.
[3]. Christy, A. J. (2013). Photocatalytic and antimicrobial investigations of nanoparticles synthesized by combustion method (Unpublished Doctoral Dissertation, Kodaikanal: Mother Teresa Women's University).
[4]. Cullity, B. D. (1956). Elements of X-ray Diffraction. Addison- Wesley Publishing Company Inc., California.
[5]. da Costa, P. G., Dandrea, R. G., Wallis, R. F., & Balkanski, M. (1993). First-principles study of the electronic structure of γ-InSe and β-InSe. Physical Review B, 48(19), 14135.
[6]. Dadras, S., & Davoudiniya, M. (2018). Analysis of YBCO high temperature superconductor doped with silver nano particles and carbon nanotubes using Williamson–Hall and size–strain plot. Physica C: Superconductivity and its Applications, 548, 116-118.
[7]. Emil, E., & Gürmen, S. (2018). Estimation of yttrium oxide microstructural parameters using the Williamson–Hall analysis. Materials Science and Technology, 34(13), 1549-1557.
[8]. Groot, C. D., & Moodera, J. S. (2001). Growth and characterization of a novel In2 Se3 structure. Journal of Applied Physics, 89(8), 4336-4340.
[9]. Gürbulak, B. (2005). Calculation of the effective mass due to the Influence of an Electric Field on the Optical Absorption in InSe: Er Single Crystal. Chinese Journal of Physics, 43(4), 856-866.
[10]. Hosseinzadeh, L., Baedi, J., & Khorsand Zak, A. (2014). X-ray peak broadening analysis of Fe50Ni50 nanocrystalline alloys prepared under different milling times and BPR using size strain plot (SSP) method. Bulletin of Materials Science, 37(5), 1147-1152.
[11]. Imai, K., Suzuki, K., Haga, T., Hasegawa, Y., & Abe, Y. (1981). Phase diagram of In-Se system and crystal growth of indium monoselenide. Journal of Crystal Growth, 54(3), 501-506.
[12]. Irfan, H., Mohamed Racik, K., & Anand, S. (2018). Microstructural evaluation of CoAl2O4 nanoparticles by Williamson–Hall and size–strain plot methods. Journal of Asian Ceramic Societies, 6(1), 54-62.
[13]. Kalita, A., & Kalita, M. P. C., (2017). Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals. Physica E: Low-dimensional Systems and Nanostructures, 92, 36-40.
[14]. Kumar, B. R., & Hymavathi, B. (2017). X-ray peak profile analysis of solid state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods, Journal of Asian Ceramic Societies. 5(2), 94- 103.
[15]. Mote, V., Purushotam, Y., & Dole, B. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics, 6(6), 1-8.
[16]. Motevalizadeh, L., Heidary, Z., & Abrishami, M. E., (2014). Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. Bulletin of Materials Science, 37(3), 397-405.
[17]. Patel, P. B., Desai, H. N., Dhimmar, J. M., & Modi, B. P. (2017, May). Growth and characterization of In0.6 Se0.4 crystals. In AIP Conference Proceedings (Vol. 1832, No. 1, p. 100007). AIP Publishing.
[18]. Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., & Kumari, B. S. (2014). X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World Journal of Nano Science and Engineering, 4(1), 21- 28.
[19]. Raranskii, N. D., Balazyuk, V. N., Kovalyuk, Z. D., Mel'nik, N. I., & Gevik, V. B. (2011). Crystal growth and elastic properties of In2Se3. Inorganic Materials, 47(11), 1174-1177.
[20]. Senthilkumar, V., Vickraman, P., Jayachandran, M., Sanjeeviraja, C. (2010). Structural and electrical studies of nano structured Sn1-x SbxO2 (x = 0.0, 1, 2.5, 4.5 and 7 at %) prepared by co-precipitation method. Journal of Materials Science: Materials in Electronics, 21(4), 343- 348.
[21]. Suryanarayana, C., & Norton, M. G. (1998). X-Ray Diffraction–A Practical approach. New York: Plenum Press.
[22]. Ulrich, C., Olguin, D., Cantarero, A., Goni, A. R., Syassen, K., & Chevy, A. (2000). Effect of Pressure on Direct Optical Transitions of γ-InSe. Physica Status Solidi (B), 221(2), 777-787.
[23]. Venkateswarlu, K., Bose, A. C., & Rameshbabu, N. (2010). X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson–Hall analysis. Physica B: Condensed Matter, 405(20), 4256-4261.
[24]. Yogamalar, R., Srinivasan, R., Vinu, A., Ariga, K., & Bose, A. C. (2009). X-ray peak broadening analysis in ZnO nanoparticles. Solid State Communications, 149(43-44), 1919-1923.
[25]. Yudasaka, M., Matsuoka, T., & Nakanishi, K. (1987). Indium selenide film formation by the double-source evaporation of indium and selenium. Thin Solid Films, 146(1), 65-73.
[26]. Zak, A. K., Majid, W. A., Abrishami, M. E., & Yousefi, R. (2011). X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sciences, 13(1), 251-256.
[27]. Zak, A. K., Majid, W. A., Abrishami, M. E., & Yosefi, R. (2012). Facile synthesis and X-ray peak broadening studies of Zn1-xMgxO nanoparticles. Ceramics International, 38(3), 2059-2064.
[28]. Zhang, J. M., Zhang, Y., Xu, K. W., & Ji, V. (2006). General compliance transformation relation and applications for anisotropic hexagonal metals. Solid State Communications, 139(3), 87-91.