References
[1]. Alsaedi, N., Burnap, P., & Rana, O. F. (2014). A combined classification-clustering framework for identifying disruptive events. In Proceedings of the 7th ASE International Conference on Social Computing, Social Com '14.
[2]. De Choudhury, M., Diakopoulos, N., & Naaman, M. (2012, February). Unfolding the event landscape on Twitter: Classification and exploration of user categories. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (pp. 241-244). ACM.
[3]. Ding, X., Liu, B., & Yu, P. S. (2008, February). A holistic lexicon-based approach to opinion mining. In Proceedings of the 2008 international Conference on Web Search and Data Mining (pp. 231-240). ACM.
[4]. Gong, Y., & Liu, X. (2001, September). Generic text summarization using relevance measure and latent semantic analysis. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 19-25). ACM.
[5]. Haghighi, A., & Vanderwende, L. (2009, May). Exploring content models for multi-document summarization. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics (pp. 362-370). Association for Computational Linguistics.
[6]. Hu, X., Tang, L., Tang, J., & Liu, H. (2013, February). Exploiting social relations for sentiment analysis in microblogging. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (pp. 537-546). ACM.
[7]. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., ... & Darrell, T. (2014, November). Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International Conference on Multimedia (pp. 675-678). ACM.
[8]. Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word–emotion association lexicon. Computational Intelligence, 29(3), 436-465.
[9]. Oh, O., Agrawal, M., & Rao, H. R. (2011). Information control and terrorism: Tracking the Mumbai terrorist attack through Twitter. Information Systems Frontiers, 13(1), 33- 43.
[10]. Olteanu, A., Castillo, C., Diakopoulos, N., & Aberer, K. (2015). Comparing events coverage in online news and social media: The case of climate change. In Proceedings of the Ninth International AAAI Conference on Web and Social Media (No. EPFL-CONF-211214).
[11]. Olteanu, A., Vieweg, S., & Castillo, C. (2015, February). What to expect when the unexpected happens: Social media communications across crises. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 994-1009). ACM.
[12]. Qian, S., Zhang, T., Hong, R., & Xu, C. (2015, October). Cross-domain collaborative learning in social multimedia. In Proceedings of the 23rd ACM International Conference on Multimedia (pp. 99-108). ACM.
[13]. Ritterman, J., Osborne, M., & Klein, E. (2009, November). Using prediction markets and Twitter to predict a swine flu pandemic. In 1st International Workshop on Mining Social Media (Vol. 9, pp. 9-17).
[14]. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A. C. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252.
[15]. Singh, S., Gupta, A., & Efros, A. A. (2012). Unsupervised discovery of mid-level discriminative patches. In Computer Vision–ECCV 2012 (pp. 73-86). Springer, Berlin, Heidelberg.
[16]. Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International Journal of Computer Vision, 104(2), 154-171.
[17]. Wang, D., Li, T., Zhu, S., & Ding, C. (2008, July). Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in Information Retrieval (pp. 307-314). ACM.
[18]. Xie, L., Kennedy, L., Chang, S. F., Divakaran, A., Sun, H., & Lin, C. Y. (2004, October). Discovering meaningful multimedia patterns with audio-visual concepts and associated text. In Image Processing, 2004. ICIP'04. 2004 International Conference on (Vol. 4, pp. 2383-2386). IEEE.
[19]. Xu, W., Liu, X., & Gong, Y. (2003, July). Document clustering based on non-negative matrix factorization. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval (pp. 267-273). ACM.
[20]. Zhang, T., & Xu, C. (2014). Cross-domain multi-event tracking via CO-PMHT. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), (Vol.10, No.4, p.31).
[21]. Zhang, W., Shan, S., Gao, W., Chen, X., & Zhang, H. (2005, October). Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on (Vol. 1, pp. 786-791). IEEE.
[22]. Zhou, W., Shen, C., Li, T., Chen, S. C., & Xie, N. (2014, August). Generating textual storyline to improve situation awareness in disaster management. In 2014 IEEE International Conference on Information Reuse and Integration (IRI) (pp. 585-592). IEEE.