Graphene Materials in Electronic Product Design

Tom Page*
* Associate Professor, Department of Product Design, Nottingham Trent University, England.
Periodicity:October - December'2018
DOI : https://doi.org/10.26634/jms.6.3.14707

Abstract

This paper investigates two areas that Graphene has shown potential in electronics; applications in existing electronics technology and applications in theoretical future biotechnology. The paper utilises research from scientific papers, reports, and journal articles supplemented by industry expert testimonies and a consumer survey. The paper then goes on to discuss how Graphene may enable the production of bio-inert Solution Gated Field Effects Transistors that could enable bidirectional interfacing between electronics and biological tissue, allowing neural interfaces that could allow products such as myoelectric prosthesis to be controlled naturally and provide natural sense feedback to the user. Finally, the paper looks at two current production methods; Micromechanical Cleavage and Chemical Vapour Deposition.

Keywords

Graphene, Electronics, Performance, Design, Microprocessing.

How to Cite this Article?

Page, T. (2018). Graphene Materials in Electronic Product Design. i-manager’s Journal on Material Science, 6(3), 1-17. https://doi.org/10.26634/jms.6.3.14707

References

[1]. 3GPP.(2018). 3GPP - LTE. Retrieved from http://www.3gpp.org/Technologies/Keywords-Acronyms/LTE [Accessed 3 April 2018].
[2]. Alter, R. (1966). Bioelectric control of Prosthesis. Technical Report. Cambridge: Research Laboratory of Electronics Massachusetts Institute of Technology.
[3]. Ang, Y. S., Zhang, C., & Kee, C. Y. (2011). Energy-loss rate of a fast particle in graphene. Applied Physics Letters, 99(053111).
[4]. Anon. (2012). Materials: Graphene's silicon cousin. Nature, 485(7396), 9.
[5]. Anthony, S. (2011). Graphene improves lithium-ion battery capacity and recharge rate by 10x. Retrieved from http://www.extremetech.com/ computing/105343- graphene-improves-lithium -ion-battery-capacity-and-recharge- rate-by-10x [Accessed 6 Janaury 2018].
[6]. Anthony, S. (2012). Graphene supercapacitors are 20 times as powerful, can be made with a DVD burner. Retrieved from http://www.extremetech.com/extreme/122763-graphene- supercapacitors-are- 20-times-as-powerful-can-be-made-with-a-dvd-burner [Accessed 7 January 2018].
[7]. Borkar, S. & Chien, A. A. (2011). The future of microprocessors. Communications of the ACM, 54(5), 67- 77.
[8]. Bourzac, K. (2012). Back To Analogue. Nature, 483, S34-36.
[9]. Cherry, K. (2018). Action Potential - How a Neuron Fires. Retrieved from http://psychology.about.com/od/ aindex/g/actionpot.htm [Accessed 25 March 2018].
[10]. Corathers, L. A. (2009). 2009 Minerals Yearbook: Silicon. Technical. Washington: U.S Department of Interior U.S Geological Survey.
[11]. Dankerl, M., Hauf, M. V., Lippert, A., Hess, L. H., Birner, S., Sharp, I. D., & Garrido, J. A. (2010). Graphene solutiongated field-effect transistor array for sensing applications. Advanced Functional Materials, 20(18), 3117-3124.
[12]. De Padova, P., Quaresima, C., Ottaviani, C., Sheverdyaeva, P. M., Moras, P., Carbone, C., & Aufray, B. (2010). Evidence of graphene-like electronic signature in silicene nanoribbons. Applied Physics Letters, 96(26), 261905.
[13]. Dineley, J., (2012). Silicene may join Graphene as Wonder Material. Retrieved from http://www.cosmosmagazine.com/news/5750/silicenemay- join-graphene-wonder-material [Accessed 4 January 2018].
[14]. Egbue, O. & Long, S., (2012). Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions. Energy Policy, 48, 717-29.
[15]. Eidos/Square Enix, (2018). Deus Ex: Human Revolution. Retrieved from http://www. deusex.com [Accessed 15 March 2018].
[16]. Empire. (2012). The Evolution of Iron Man's Suit. Retrieved from http://www.empireonline.com/features/ evolution-iron-man-suits [Accessed 25 March 2018].
[17]. Encyclopedia Britannica. (2018). Encyclopedia Britannica. Retrieved from http://www.britannica.com/ EBchecked/topic/183635/electron-scattering [Accessed 20 March 2018].
[18]. Farmer, D.B., Valdes-Garcia, A., Dimitrakopoulos, C., & Avouris, P. (2012). Impact of gate resistance in graphene radio frequency transistors. Applied Physics Letters, 101, 143503.
[19]. Fellet, M. (2012). High-performance graphene transistors made using sticky tape. Retrieved from http://arstechnica.com/science/2012/07/high-performance-graphene-transistors- made-using-sticky-tape/ [Accessed 5 January 2018].
[20]. Geim, A. (2011). Random Walk to Graphene (Nobel Lecture). In Geim, A., (Ed). The Nobel Foundation. Weinheim: Wiley-VCH.
[21]. Google. (2012). Welcome to a World Through Glass. Retrieved from http://www.google.com/ glass/start/what- it- does/ [Accessed 26 March 2018].
[22]. Huang, P. Y., Ruiz-Vargas, C. S., van der Zande, A. M., Whitney, W. S., Levendorf, M. P., Kevek, J. W., & Park, J. (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 469(7330), 389-392.
[23]. Kara, A., Enriquez, H., Seitsonen, A. P., Voon, L. L. Y., Vizzini, S., Aufray, B., & Oughaddou, H. (2012). A review on silicene-new candidate for electronics. Surface science reports, 67(1), 1-18.
[24]. Karmehed, A. (2011). Graphene processors on the Market in 2022. Retrieved from http://www.nordichardware.com/Graphics/ graphene-processors- on-the-market-in-2022.html [Accessed 15 December 2012].
[25]. Kedem, N. (2012). Six Things to Know about Smart phone Batteries. Retrieved from http://news.cnet.com/8301-1035_3-57438600-94/six- things- to-know-about-smartphone-batteries/ [Accessed 10 April 2018].
[26]. Kim, K., Choi, J. Y., Kim, T., Cho, S. H., & Chung, H. J. (2011). A role for graphene in silicon-based semiconductor devices. Nature, 479(7373), 338-344.
[27]. Kotov, N. A., Winter, J. O., Clements, I. P., Jan, E., Timko, B. P., Campidelli, S., & Bellamkonda, R. V. (2009). Nanomaterials for neural interfaces. Advanced Materials, 21(40), 3970-4004.
[28]. Kumar, S., McEvoy, N., Kim, H. Y., Lee, K., Peltekis, N., Rezvani, E., & Duesberg, G. S. (2011). CVD growth and processing of graphene for electronic applications. Physica Status Solidi (B), 248(11), 2604-2608.
[29]. Laird, J. (2012). Intel Ivy Bridge: What you need to know. Retrieved from http://www.techradar.com/news/ computing-components/processors/intel-ivy-bridge- what- you-need-to-know-1077240 [Accessed 29 March 2018].
[30]. Lee, J. K., Smith, K. B., Hayner, C. M., & Kung, H. H., (2010). Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chemical Communications, 46(12), 2025-2027.
[31]. Mims, C., (2010). The high cost of upholding Moore's law. Technology Review, 113(3), 71-72.
[32]. Myoelectric Prosthetics. (n.d.). Myoelectric Prosthetics. Retrieved from http://www.myoelectricprosthetics.com [Accessed 3 April 2018].
[33]. Noorden, R. V. (2012). Production: Beyond sticky tape. Nature, 483, S32-33.
[34]. Northwestern University. (2011). New technology improves both energy capacity and charge rate in rechargeable batteries. Retrieved from http://www.northwestern.edu/newscenter/stories/2011/11 /batteries-energy-kung.html [Accessed 6 January 2018].
[35]. Rushton, K. (2012). Number of Smartphones Tops 1 Billion. Retrieved from http://www.telegraph.co.uk/ finance/9616011/Number-of-smartphones-tops-onebillion. html [Accessed 5 April 2018].
[36]. Savage, N. (2012). Materials science: Super carbon. Nature, 483(7389), S30-31.
[37]. Schmidt, C. (2012). Bioelectronics: The bionic material. Nature, 483, S37.
[38]. Schwierz, F. (2011). Electronics: Industry-Compatible Graphene Transistors. Nature, 472(7341), 41.
[39]. Segal, M. (2012). Material history: Learning from silicon. Nature, 483, S43-44.
[40]. Semiconductor One Source. (2018). Semiconductor Glossary. Retrieved from http://www.semi1source.com/glossary/ [Accessed 26 March 2018].
[41]. Sun, D., Yan, X., Lang, J., & Xue, Q. (2018). High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper. Journal of Power Sources, 222, 52-58.
[42]. Tesla. (2018). Model S. Retrieved from http://www.teslamotors.com/models [Accessed 10 April 2018].
[43]. Thurber, M. (2012). Battery Fires: Keeping Li-Ion Caged. Retrieved from http://www.ainonline.com/aviation- news/ aviation-international-news/2012-02-01/ battery- fires- keeping-li-ion-caged [Accessed 8 April 2018].
[44]. Venema, L. (2011). Silicon Electronics and Beyond. Nature, 479(7373), 309.
[45]. Wang, H., Hsu, A. L.,Kim, K.K.,Kong, J.,& Palacios, T. (2011). Graphene electronics for RF applications. MTT-S International Microwave Symposium (pp.1-4).
[46]. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C. (2012). Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 208, 210- 224.
[47]. Wu, Y., Lin, Y. M., Bol, A. A., Jenkins, K. A., Xia, F., Farmer, D. B., & Avouris, P. (2011). High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472(7341), 74-78.
[48]. XG Sciences (2018). New Battery Anode with Four Times the Capacity of Conventional Materials. Retrieved from "http://xgsciences.com/releases/ new-battery- anode/ [Accessed 13 April 2018].
[49]. Zhang, J., Gao, J., Liu, L., & Zhao, J. (2012). Electronic and transport gaps of graphene opened by grain boundaries. Journal of Applied Physics, 112(5), 053713.
[50]. Zhang, S., Li, Y., & Pan, N. (2012). Graphene based supercapacitor fabricated by vacuum filtration deposition. Journal of Power Sources, 206, 476-82.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.