References
[1]. Bhargava, P. S. S., & Chakrabarti, A. (2012). Natural Frequencies and mode shape of laminated composite skew hypar shells with complicated boundary conditions using finite element method. Advanced Material Research, 585, 44-48. https://doi.org/10.4028/www. scientific.net/AMR.585.44
[2]. Chakravorty, D., Bandyopadhyay, J. N., & Sinha, P. K. (1995). Finite element free vibration analysis of point supported laminated composite cylindrical shells. Journal of Sound and Vibration, 181(1), 43-52. https://doi.org/10.1006/jsvi.1995.0124
[3]. Chakravorty, D., Sinha, P. K., & Bandyopadhyay, J. N. (1998). Applications of FEM on free and forced vibration of laminated shells. Journal of Engineering Mechanics, 124(1), 1-8. https://doi.org/10.1061/(A SCE)0733- 9399(1998)124:1(1)
[4]. Dey, A., Bandyopadhyay, J. N., & Sinha, P. K. (1992). Finite element analysis of laminated composite paraboloid of revolution shells. Computers & Structures, 44 (3), 675-682. https://doi.org/10.1016/0045-7949(92)90400-T
[5]. Dey, S., Mukhopadhyay, T., & Adhikari, S. (2015). Stochastic free vibration analyses of composite shallow doubly curved shells – A Kriging model approach. Composites Par t B: Engineering, 70, 99-112. https://doi.org/10.1016/j.compositesb.2014.10.043
[6]. GulshanTaj, M. N. A., & Chakraborty, A. (2013). Dynamic response of functionally graded skew shell panel. Latin American Journal of Solids and Structures, 10, 1243-1266. https://doi.org/10.1590/S1679- 78252013000600009
[7]. Kumar, A., Chakrabarti, A., & Bhargava, P. (2013). Vibration of laminated composite skew hypar shells using higher order theory. Thin-Walled Structures, 63, 82-90. https://doi.org/10.1016/j.tws.2012.09.007
[8]. Kumar, A., Chakrabarti, A., & Bhargava, P. (2015). Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory. Journal of Vibration and Control, 21(4), 725-735. https://doi.org/10.1177/1077546313492555
[9]. Liew, K. M., Kitipornchai, S., & Wang, C. M. (1993). Research developments in analyses of plates and shells. Journal of Constructional Steel Research, 26(2-3), 231- 248. https://doi.org/10.1016/0143-974X(93)90038-T
[10]. Liew, K. A., & Lim, C. A. (1994a). Vibratory characteristics of cantilevered rectangular shallow shells of variable thickness. AIAA Journal, 32(2), 387-396. https://doi.org/ 10.2514/3.59996
[11]. Liew, K. M., & Lim, C. W. (1994b). Vibration of perforated doubly-curved shallow shells with rounded corners. International Journal of Solids and Structures, 31(11), 1519-1536. https://doi.org/10.1016/0020- 7683(94)90012-4
[12]. Liew, K. M., & Lim, C. W. (1995a). A Ritz vibration analysis of doubly-curved rectangular shallow shells using a refined first-order theory. Computer Methods in Applied Mechanics and Engineering, 127(1-4), 145-162. https://doi.org/10.1016/0045-7825(95)00837-1
[13]. Liew, K. M., & Lim, C. W. (1995b). A Higher-order theory for vibration analysis of curvilinear thick shallow shells with constrained boundaries. Journal of Vibration and Control, 1(1), 15-39. https://doi.org/10.1177/1077 54639500 100103
[14]. Liew, K. M., & Lim, C. W. (1996). Vibratory characteristics of pretwisted cantilever trapezoids of unsymmetric laminates. AIAA Journal, 34(5), 1041-1050. https://doi.org/10.2514/3.13185
[15]. Liew, K. M., Lim, C. W., & Kitipornchai, S. (1997). Vibration of shallow shells: A review with bibliography. Applied Mechanics Reviews, 50(8), 431-444. https://doi.org/10.1115/1.3101731
[16]. Liew, K. M., Lim, C. W., & Ong, L. S. (1994a). Flexural vibration of doubly-tapered cylindrical shallow shells. International Journal of Mechanical Sciences, 36(6), 547- 565. https://doi.org/10.1016/0020-7403(94)90031-0
[17]. Liew, K. M., Lim, C. W., & Ong, L. S. (1994b). Vibration of pre-twisted shallow conical shells. International Journal of Solids and Structures, 31(18), 2463-2476. https://doi.org/10.1016/0020-7683(94)90031-0
[18]. Lim, C. W., & Liew, K. M. (1994). A pb-2 Ritz formulation for flexural vibration of shallow cylindrical shells of rectangular planform. Journal of Sound and Vibration, 173(3), 343-375. https://doi.org/10.1006/j svi.1994.1235
[19]. Lim, C. W., & Liew, K. M. (1995a). Vibration of pretwisted cantilever trapezoidal symmetric laminates. Acta Mechanica, 111(3-4), 193-208. https://doi.org/ 10.1007/ BF01376930
[20]. Lim, C. W., & Liew, K. M. (1995b). Vibratory behaviour of shallow conical shells by a global Ritz formulation. Engineering Structures, 17(1), 63-70. https://doi.org/10. 1016/0141-0296(95)91041-X
[21]. Mukherjee, A., & Mukhopadhyay, M. (1988). Finite element free vibration of eccentrically stiffened plates. Computers & Structures, 30 (6), 1303-1317. https://doi.org/10.1016/0045-7949(88)90195-2
[22]. Narita, Y., & Leissa, A. W. (1984). Vibrations of corner point supported shallow shells of rectangular planform. Earthquake Engineering & Structural Dynamics, 12(5), 651-661. https://doi.org/10.1002/eqe.4290120506
[23]. Nayak, A. N., & Bandyopadhyay, J. N. (2002a). Free vibration analysis and design aids of stiffened conoidal shells. Journal of Engineering Mechanics, 128(4), 419- 427. https://doi.org/10.1061/(ASCE)0733-9399(2002) 128:4(419)
[24]. Nayak, A. N., & Bandyopadhyay, J. N. (2002b). On the free vibration of stiffened shallow shells. Journal of Sound and Vibration, 255(2), 357-382. https://doi.org/ 10.1006/ jsvi.2001.4159
[25]. Nayak, A. N., & Bandyopadhyay, J. N. (2005). Free vibration analysis of laminated stiffened shells. Journal of Engineering Mechanics, 131(1), 100-105. https://doi.org/ 10.1061/(ASCE)0733-9399(2005)131:1(100)
[26]. Nayak, A. N., & Bandyopadhyay, J. N. (2006). Dynamic response analysis of stiffened conoidal shells. Journal of Sound and Vibration, 3(291), 1288-1297. https://doi.org/10.1016/j.jsv.2005.04.035
[27]. Pradyumna, S., & Bandyopadhyay, J. N. (2008). Static and free vibration analyses of laminated shells using a higher-order theory. Journal of Reinforced Plastics and Composites, 27(2), 167-186. https://doi.org/10.1177/07 31684407081385
[28]. Qatu, M. S., & Leissa, A. W. (1991a). Free vibrations of completely free doubly curved laminated composite shallow shells. Journal of Sound and Vibration, 151(1), 9- 29. https://doi.org/10.1016/0022-460X(91)90649-5
[29]. Qatu, M. S., & Leissa, A. W. (1991b). Natural frequencies for cantilevered doubly-curved laminated composite shallow shells. Composite Structures, 17(3), 227-255. https://doi.org/10.1016/0263-8223(91)90053-2
[30]. Qatu, M. S., & Leissa, A. W. (1991c). Vibration studies for laminated composite twisted cantilever plates. International Journal of Mechanical Sciences, 33(11), 927-940. https://doi.org/10.1016/0020-7403(91)90012-R
[31]. Reddy, J. N., & Chandrashekhara, K. (1985). Geometrically non-linear transient analysis of laminated, doubly curved shells. International Journal of Non-Linear Mechanics, 20(2), 79-90. https://doi.org/10.1016/0020- 7462(85)90002-2
[32]. Rikards, R., Chate, A., & Ozolinsh, O. (2001). Analysis for buckling and vibrations of composite stiffened shells and plates. Composite Structures, 51(4), 361-370. https://doi.org/10.1016/S0263-8223(00)00151-3
[33]. Sahoo, S. (2012). Behaviour and optimization aids of composite stiffened hypar shell roofs with cutout under free vibration. ISRN Civil Engineering, 2012, 1-14. https://doi.org/10.5402/2012/989785
[34]. Sahoo, S. (2013). Dynamic characters of stiffened composite conoidal shell roofs with cutouts: design aids and selection guidelines. Journal of Engineering, 2013, 18. https://doi.org/10.1155/2013/230120
[35]. Sahoo, S. (2014a). Free vibration of laminated composite stiffened saddle shell roofs with cut-outs. IOSR Journal of Mechanical and Civil Engineering, ICAET-2014, 30-34.
[36]. Sahoo, S. (2014b). Laminated composite stiffened shallow spherical panels with cutouts under free vibration–A finite element approach. Engineering Science and Technology, An International Journal, 17(4), 247-259. https://doi.org/10.1016/j.jestch.2014.07.002
[37]. Sahoo, S. (2015a). Free vibration behavior of laminated composite stiffened elliptic parabolic shell panel with cutout. Curved and Layered Structures, 2(1), 162-182. https://doi.org/10.1515/cls-2015-0009
[38]. Sahoo, S. (2015b). Laminated composite stiffened cylindrical shell panels with cutouts under free vibration. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 5(3), 37-63. https://10.4018/IJMMME.2015070103
[39]. Sahoo, S. (2016). Performance evaluation of free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cut-out. International Journal of Engineering and Technologies, 7, 1 - 2 4 . https://doi.org/10.18052/www.scipress.com/IJET.7.1
[40]. Sahoo, S. (2019). Characteristics of vibrating composite stiffened hypars with cut-out at different modes. Engineering Transactions, 67(1), 75-99. https://10.24423/EngTrans.946.20190214
[41]. Sahoo, S., & Chakravorty, D. (2005). Finite element vibration characteristics of composite hypar shallow shells with various edge supports. Modal Analysis, 11(10), 1291- 1309. https://doi.org/10.1177/1077546305057260
[42]. Sahoo, S., & Chakravorty, D. (2006). Stiffened composite hypar shell roofs under free vibration: Behaviour and optimization aids. Journal of Sound and Vibration, 295(1-2), 362-377. https://doi.org/10.1016 /j.jsv.2006.01.012
[43]. Schwarte, J. (1994). Vibrations of corner point supported rhombic hypar-shells. Journal of Sound and Vibration, 175(1), 105-114. https://doi.org/10.1006/ jsvi.1994.1314
[44]. Sivasubramonian B., Kulkarni A. M., & Rao G.V. (1997). Free vibration of curved panels with cut-outs. Journal of Sound and Vibration, 200(2), 227-234.
[45]. Srinivasa C.V., Suresh Y.J., & Prema Kumar W.P. (2014). Experimental and finite element studies on free vibration of cylindrical skew panels, International Journal of Advanced Structural Engineering, 6, 1.
[46]. Topal, U. (2006). Mode-frequency analysis of laminated spherical shell. In Proceedings of the 2006 IJME. INTERTECH International Conference-Session ENG P501-001, Kean University, NJ; 19-21 October 2006.
[47]. Tornabene F., Fantuzzi N., Bacciocchi M., & Dimitri R. (2015). Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials, Composite Structures, 133, 278-299.
[48]. Zhang, C., Jin, G., Ma, X., & Ye, T. (2016). Vibration analysis of circular cylindrical double-shell structures under general coupling and end boundary conditions, Applied Acoustics, 110, 176-193.